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Abstract
A crack propagating through a laminate can cause severe structural failure, which may be avoided
by deflecting or arresting the crack before it deepens. Inspired by the biology of the scorpion
exoskeleton, this study shows how crack deflection can be achieved by gradually varying the
stiffness and thickness of the laminate layers. A new generalized multi-layer, multi-material
analytical model is proposed, using linear elastic fracture mechanics. The condition for deflection
is modeled by comparing the applied stress causing a cohesive failure, resulting in crack
propagation, to that causing an adhesive failure, resulting in delamination between layers. We show
that a crack propagating in a direction of progressively decreasing elastic moduli is likely to deflect
sooner than when the moduli are uniform or increasing. The model is applied to the scorpion
cuticle, the laminated structure of which is composed of layers of helical units (Bouligands) with
inward decreasing moduli and thickness, interleaved with stiff unidirectional fibrous layers
(interlayers). The decreasing moduli act to deflect cracks, whereas the stiff interlayers serve as crack
arrestors, making the cuticle less vulnerable to external defects induced by its exposure to harsh
living conditions. These concepts may be applied in the design of synthetic laminated structures to
improve their damage tolerance and resilience.

1. Introduction

A major challenge in engineering design is to ensure
structural integrity of a product throughout its
intended life cycle. Designers typically apply stand-
ard safety margins to account for the uncertainty
and variability in loads, material properties, and
environmental conditions. Such conventional design
approach is not optimal as it results in overdesign and
excessive costs. Structures designed for damage tol-
erance are more efficient and resilient, as they can
sustain inherent material flaws and their growth dur-
ing service. Propagating cracks can be detrimental
and even catastrophic, and therefore design measures
are taken to contain them by arresting, bridging, or
diversion. For example, a crack starting at the sur-
face of a structure and propagating deeply into it,
can be forced to deflect perpendicularly in order to
avoid catastrophic failure. In composite laminates, a
deflected surface crack causes delamination between

laminae, absorbing energy by deforming and tearing
the interlaminar adhesive [1].

Nature excels in optimizing structures for resi-
lience and self-healing, given the limited available
resources and the high costs involved in building
structural tissues. Our recent communication reviews
the various architectural strategies used in nature,
most notably layered composite structures and com-
plex geometries, and introduces the notion of hier-
archical interfaces [1]. Elaborate micro-structural
mechanisms are implemented in biology to com-
bine strength and toughness, often conflicting prop-
erties, and may inspire engineering design [2]. One
such measure involves orientation and anisotropy,
which are designed into biological structures to
achieve diverse functionalities [3]. Another meas-
ure is the introduction of soft interfaces into ceram-
ics and ceramic-based composites to overcome their
inherent brittleness by deflecting cracks [4–6]. Inter-
faces have a key role in controlling the deformation
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Figure 1. Cracks in the scorpion exoskeleton after loading. (a) Scorpio Maurus Palmatus, the chela (pincer) is marked by arrow.
(b) Cross section through the chela cuticle after bending test, showing surface propagating (Griffith) cracks and delamination
cracks. (c) Long delamination crack close to the cuticle surface (Adapted from [16]. © IOP Publishing Ltd. All rights reserved).

and toughness of composites constructed from hard
building blocks, such as the ceramic platelets in bone,
by channeling the propagation of cracks [7–9]. Yet
another approach is the variable thickness of layers in
a laminated structure, found in the gradually decreas-
ing silica layers in the sponge spicule, which is shown
to impact the structural strength [10–12]. Thin lay-
ers are found to limit the penetration depth of cracks
by forcing early deflection, thus enhancing tough-
ness and survivability [13], and, furthermore, below
a certain critical size, materials are shown to become
insensitive to flaws at nanoscale [14].

A representative biological example of a com-
plex laminated structure, which is in the focus of
the current study, is the scorpion exoskeletal cuticle
[15, 16]. The cuticle is arranged in eight hierarch-
ical levels and respective interfaces: (from bottom
to top) α-chitin molecules, chitin-protein fibrils and
fibers, unidirectional fibrous laminae, helical lamin-
ate assemblies (Bouligands), and stacks of Bouligands
and unidirectional layers. See detailed illustrations in
[17] (figure 6) and in [15] (figure 1). This structure
is strong and tough, with the ability to deflect Grif-
fith cracks propagating from the surface, to perpen-
dicular delamination cracks propagating between lay-
ers (figures 1(a) and (b)). Delamination cracks can
be very long (figure 1(c)), thus dissipating a large
amount of energy, but more importantly, they occur

fairly close to the cuticle surface, thereby blocking
the propagation of surface cracks at an early stage
andmaintaining structural integrity with only partial
functional degradation.

Whether a crack tends to propagate parallel to
itself in a Griffith-like fashion or to bifurcate in a
deflected direction (not necessarily perpendicular to
its original path) has been extensively studied for the
bilayer case but not for the general case of graded,
multilayer (with variable thickness), multi-material
structures. Early analytical and numerical models
were restricted to crack propagation and/or bifurc-
ation between elastic bi-material layers only [18–
26]. Rare models have been proposed for lamin-
ates with a large number of alternating bi-material
layers of equal thickness [27]. However, very few,
if any, models exist for functionally graded bi- or
multi-material laminates, which are necessary for
addressing the high complexity of natural structures.
Such models may answer the key question whether
graded properties (stiffness and thickness) confer
advantages to natural structures, which could be
used as inspiration in engineering laminates. Hence,
the purpose of the current study is to develop a
new generalized analytical model for crack deflec-
tion in a multi-layer, multi-material laminate, and
apply it to a biological laminate such as the scorpion’s
cuticle.
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Here, we start by calculating the applied stresses
which may cause a propagation or delamination
failure in a discretely anisotropic inhomogeneous
laminate under in-plane uniaxial tension. The
approach is based on ideas developed by Kendall
in the 1970s for a dual-layer structure [18], with
generalization to a multi-layer laminate, which has
varying laminae thicknesses and mechanical prop-
erties. We proceed with defining the criterion for
deflecting a crack from propagation to delamin-
ation, and apply it to a general case of a lamin-
ate with graded moduli. The application to a bio-
logical tissue is then described, with focus on the
scorpion cuticle, including the effect of varying
laminae thickness and stiffness, as well as stiff-
ness discontinuity between adjacent laminae. We
demonstrate how the gradation of laminae stiffness
can enhance structural integrity without sacrificing
strength.

2. Theory of crack deflection in laminates

A general laminated structure is highly complex, as
it exhibits anisotropy of stiffness, strength and frac-
ture toughness in all three directions, as well as
inhomogeneity of these properties across layers. A
crack in a layered laminate can advance either by
propagation across laminae (a Griffith crack), or by
delamination of the interface between laminae.When
propagating towards an interface, it may advance
either way, depending on the local and global elastic
properties, the local fracture energies for propaga-
tion (cohesive energy) and delamination (adhesive
energy), the crack depth, the geometry of the lam-
inate, and the type of load applied on it. From
toughness and structural reliability points of view,
crack advancement by delamination is preferred over
propagation, as it dissipates energy during failure
while gracefully degrading the structural integrity,
whereas propagation can result in fast catastrophic
failure.

2.1. Anisotropic inhomogeneous laminate
Consider a layered laminate of thickness d and width
w, infinite in the x direction, made of successive
laminae numbered i = [1..n], whose thickness is ti
(figure 2). The mechanical properties of lamina i in
the x direction are its stiffness Ei, cohesive fracture
energyGco,i, and adhesive fracture energyGad,i. These
properties are uniform throughout the lamina’s own
thickness, but vary across the laminate thickness, so
that the laminate is inhomogeneous in the z direc-
tion. The laminate is subjected to a uniform in-plane
stress σ in the x direction. A Griffith crack of length
c, perpendicular to the loading direction, propagates
towards an interface located within lamina k, and can
either proceed in a self-similar fashion or deflect per-
pendicularly along a length lwithin the interface. The

laminae mechanical properties are anisotropic within
the xy plane, and therefore vary with respect to a given
loading direction.

2.2. Cohesive and adhesive failure stresses
According to fracture mechanics, a Griffith crack in
a plate under load will propagate when its growth
releases an amount of stored elastic energy large
enough to break the chemical bonds across the crack.
In formal terms, the condition for crack instability,
that is propagation, is obtained by equating the rate
of change of the elastic energy released in the region
above the crack tip by a growing cohesive crack, to
the rate of change of the surface energy gained by the
crack. The work done by the applied stress is ignored,
as the displacement of the region below the crack
tip is negligible. This leads to the following expres-
sion for the stress causing further propagation of the
crack (breaking of bonds across a layer, or cohesive
failure)—see details in the appendix:

σco = Ē

[
Gco

π cĒ1 (1− ν2)

]1/2
=

√
GcoĒ

π c(1− ν2)

√
Ē

Ē1
(1)

where Ē is the weighted-average in-plane stiffness of
the entire laminate, Ē1 is the weighted-average stiff-
ness in the laminate upper region, Gco is the cohes-
ive fracture energy at the crack tip, and the term
1− ν2 is the effect of Poisson’s ratio in plane strain
condition (e.g. in thick laminates), removed in plane
stress condition. A weighted-average is obtained by
summing up the stiffnesses of the individual layers,
each weighted by its own thickness. Equation (1) has
two terms: the classic Griffith relation (first square-
root), where

√
GcoĒ/(1− ν2)≡ Kc is defined as the

laminate fracture toughness, and an inhomogeneity
correction factor (second square-root). For a homo-
genous plate (uniform stiffness, Ē1 = Ē= E), the cor-
rection factor is 1 and the classic Griffith relation is
recovered. Substituting the average stiffnesses Ē and
Ē1 (see equation (32) in the appendix), the stress
causing propagation (cohesive failure) is obtained in
a discrete form containing the explicit mechanical
properties of each layer:

σco =
1

d

[
Gco,k

π (1− ν2)

]1/2( n∑
i=1

Eiti

)

×

 1∑k
i=1Eiti − Ek

(∑k
i=1ti − c

)
1/2 (2)

whereGco,k is the cohesive fracture energy at lamina k.
Similarly, a delamination crack in a plate under

load will advance when its growth releases a net
amount of stored elastic energy large enough to
break the chemical bonds across the interface. In
formal terms, the condition for crack instability in
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Figure 2. Anisotropic inhomogeneous laminate geometry, properties and loading. The laminate has overall thickness d and width
w, is infinite in the x-direction, and consists of n parallel laminae. The laminate is loaded by a stress σ in the x-direction. A crack c
in the yz plane reaches lamina k, whose modulus is Ek and thickness is tk. The crack may deflect into the interface, resulting in a
crack l in the xy plane. The average stiffnesses in the region of the crack c and in the region below it are Ē1 and Ē2, respectively.
The fracture energies at the crack tip for cohesive and adhesive failures are Gco,k and Gad,k, respectively.

delamination is obtained by equating the net change
rate of the elastic energy released in the region above
the crack tip and the elastic energy gained in the
region below the crack tip by a growing adhesive
crack, to the change rate of the surface energy gained
by the crack. Additional energy is invested in the crack
by the work done by the applied stress as a result of
the elastic displacement of the region below the crack
tip. This leads to the following expression for the
stress causing delamination (debonding of an inter-
face between layers, or adhesive failure)—see details
in the appendix:

σad =

[
2GadĒ

c

(
1− c

d

) Ē2
Ē1

]1/2
=

√
2GadĒ

c

(
1− c

d

)√ Ē2
Ē1
(3)

where Ē2 is the weighted-average stiffness in the lam-
inate lower region, and Gad is the adhesive fracture
energy at the crack tip. Note that the stress causing
adhesive failure is independent of the crack length l.
Equation (3) has two terms: a Griffith-like relation in
which Gco is replaced by Gad (first square-root), and
an inhomogeneity correction factor (second square-
root) which tends to 1 for homogenous plate (Ē1 =
Ē2). Substituting the average stiffnesses Ē, Ē1 and Ē2
(see equation (32) in the appendix), the stress caus-
ing delamination (adhesive failure) is obtained in
a discrete form containing the explicit mechanical
properties of each layer:

σad =
1

d

[
2Gad,k

(
n∑

i=1

Eiti

)

×
∑n

i=kEiti − Ek
(∑n

i=kti − d+ c
)∑k

i=1Eiti − Ek
(∑k

i=1ti − c
)
1/2

(4)

where Gad,k is the adhesive fracture energy at lamina
k. This equation is the same as Wagner’s equation for
interfacial failure in a laminate (with minor adapta-
tion of indices) [28, 29].

We see that the modeling by Kendall for cohesive
and adhesive failures in a bi-material plate [18], can
be adapted to a general multilayer laminate as well, by
substituting weighted-average moduli for the regions
above and below the crack tip (equations (1) and (3)).
This applies also to the criterion for crack deflec-
tion from propagation to delamination described in
the next section. Furthermore, we see that, although
the fracture energies Gco (z) and Gad (z) vary with the
depth z in the laminate, the values that matter for the
cohesive and adhesive stresses are those at the crack
tip (z= c), Gco = Gco (c) (equation (24)) and Gad =
Gad (c) (equation (28)).

Both insights, obtained formally from the math-
ematical formulation in the appendix, are quite
intuitive. The elastic energy released during crack
advancement, whether by propagation or by delamin-
ation, is stored in the bulk regions above and below
the crack tip. In addition, the elastic strain of these
regions tends to be uniform across their layers
because regions at different depth z are attached
firmly together and therefore deflect about the same
in the loading direction. Thus, when integrating the
elastic energy along z we get an average modulus
weighted by the local thickness dz. On the other
hand, the fracture energies that are relevant to crack
advancement are those of the material at the crack
forefront (the leading tip), and are not affected by the
history of the crack trajectory.

For small cracks, both the cohesive and adhesive
stress expressions converge to the form

4
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σ ∝ Ē

[
G

cĒ1

] 1
2

=

√
GĒ

c

√
Ē

Ē1
(5)

except for a different numerical prefactor. This rela-
tionship is obtained realizing that Ē2 ∼= Ē for a small
crack, and has two terms: the classic Griffith-like rela-
tion (first square-root), and an inhomogeneity cor-
rection factor (second square-root). Equation (5) tells
us that the smaller Ē1, the more difficult it is for a
crack to advance. In other words, whether the failure
is cohesive or adhesive, a higher stress will be required
to advance a crack from a compliant media (Ē1) to a
stiff media (Ē2), and vice versa.

2.3. Crack deflection from propagation to
delamination
The deflection of a propagating crack to delamination
is, as noted before, a preferred situation for tough-
ness and reliability. Such deflection will occur when
the stress causing an adhesive failure is lower than the
stress causing a cohesive failure, that is,

σad < σco. (6)

Substituting the cohesive and adhesive stresses
from equations (1) and (3) and rearranging, we
obtain the criterion for crack deflection from cohesive
failure to adhesive failure:

Gad

Gco
<

1

4π (1− ν2)(1− c/d)

Ē

Ē2
(7)

where Ē and Ē2 are the weighted-average in-plane
moduli of the entire laminate and of the portion
beyond the crack tip, respectively, and Gad and Gco

are the adhesive and cohesive fracture energies at
the layer reached by the crack tip, respectively. A
factor of

√
2 was added to the stress of an adhes-

ive crack to account for crack initiation [18, 28,
30]. Substituting the average stiffnesses Ē and Ē2
(see equation (32) in the appendix), the deflec-
tion criterion is obtained in a discrete form con-
taining the explicit mechanical properties of each
layer:

Gad,k

Gco,k
<

1
4π (1− ν2)

∑n
i=1Eiti∑n

i=kEiti − Ek
(∑n

i=kti − d+ c
) .
(8)

The cohesive and adhesive failure stresses in
equations (1) and (3) are a good approximation for
short cracks, whereas for long cracks (when the ratio
between crack length and laminate thickness, c/d, is
high) a correction factor <1 should be incorporated
to account for the increased stress intensity near the
crack. See for example AFGROW Handbook [31].
That stress field affects the elastic energy stored in
the structure and the corresponding strain energies
released during crack advancement. As both crack
types are exposed to the same stress field, the effect
should be similar in both. Therefore we estimate, for

the purpose of the current analysis, that a similar
factor applies for both stress types. As a result, this
stress intensity factor would cancel in equation (6),
and therefore the crack deflection analysis should
apply for long cracks as well as for short cracks.

Equations (7) and (8) demonstrate that, as the
crack c grows, the equation’s right side increases, giv-
ing way to higher tendency for deflection. The reason
for this becomes clear when observing the evolution
of the strain release and gain regions in figure 10. In
both failure types, the strain release regions are above
the crack tip and therefore increase in proportion to
the crack growth; however, in a delamination failure,
there is in addition a strain gain region below the
crack tip, which gradually diminishes with the crack
growth, consequently increasing the net energy avail-
able for delamination as the propagation crack grows.
Thus, the adhesive fracture stress decreases faster with
c than the cohesive fracture stress, resulting in higher
likelihood for deflection.

The higher Ē2, the more difficult it is for a crack
to deflect from propagation to delamination. In other
words, when a propagating crack enters a stiffer
media (Ē2), it will tend to continue propagating rather
than deflecting perpendicularly. Conversely, a crack
propagating from stiff (Ē1) to compliant (Ē2) media
will find it easier to deflect. This trend looks, at first
sight, counter-intuitive because it seems reasonable to
assume that a propagating crack will be deterred from
entering stiff media. However there is no contradic-
tion here because, at the same time, deflecting per-
pendicularly becomes even more difficult, as can be

seen from the ratio σad/σco ∝ (Ē2/Ē)
1/2

(obtained by
dividing equation (3) by equation (1)), which means
that when entering stiffer media (Ē2 is higher), the
stress required for adhesive failure is higher, resulting
in higher tendency for continued self-similar crack
propagation.

This argument refers to the expression at the
right side of the inequality in equation (7), which
accounts for the elastic stiffnesses and their variation
with respect to the laminate structure and the crack
length. However, the energies ratio in the left side
of the inequality, Gad/Gco, varies with respect to the
same variables as well. For instance, in a laminated
fiber composite, the in-plane modulus depends on
the fibers volume fraction, such that a higher frac-
tion of fibers will yield higher Ē2. Similarly, the cohes-
ive energy released by crack advancement,Gco, which
is dominated by the strong fibrous elements in the
structure, will be higher for higher fibers fraction.
Consequently, both sides of equation (7) will change
in proportion to the fiber fraction, Ē2 with respect to
the fraction in the layers beyond the crack tip, and
Gco with respect to the local fraction at the crack tip.
The combined effect on the deflection criterion in
brittle materials is analyzed in detail and presented
in section 2.4, and demonstrated for two cases (the
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graded moduli case, and the scorpion’s endocuticle
case) in sections 2.5 and 3.2.

For small cracks, both criteria (7) and (8) con-
verge to the form [18]

Gad

Gco
<

1

4π (1− ν2)
(9)

This relationship is obtained when realizing that Ē2 ∼=
Ē for a small crack. This means that for small cracks
the elastic moduli do not play a role in the deflection
process, regardless of the material inhomogeneity.

In layered composites, a crack often adopts a step-
wise trajectory, where it starts propagating perpen-
dicularly to the laminate, then deflects horizontally
by delamination along an interface, then returns to
propagation and keeps alternating between delamin-
ation and propagation until complete failure. As dis-
cussed previously, delamination failure is preferred
for toughness and reliability, because it dissipates
energy without causing a catastrophic failure, and
therefore reverting a crack back to propagationmight
be an undesired occurrence. Apparently, reverting
a crack from delamination to propagation requires
moving the crack initiation factor of

√
2, applied

to the adhesive failure stress, to the cohesive fail-
ure stress, resulting in overcoming a stress threshold
factor of

√
2
√
2= 2. This stress threshold is equi-

valent to overcoming an energy threshold factor of
22 = 4, as G∝ σ2 (equation (5)). Thus, reversion
is unlikely, unless the delamination ran its course,
or a separate Griffith crack (due to a defect) was
encountered that is deep enough to reach a new layer
having a much lower Gco (by more than a factor of
4) and/or a much higher Gad. Such abrupt fracture
energy changes between layers are met, for example,
in the alternating structure of unidirectional interlay-
ers and quasi isotropic Bouligand layers in the scor-
pion’s endocuticle (this is discussed in section 3.2)
[15, 16]. The mean length l before crack deflection
back to propagation would be∼ 1/λ̄d, where λ̄d is the
linear density of defects in the loading direction. Fur-
ther analysis on this subject is not in the scope of the
current study.

2.4. Failure stresses and crack deflection in brittle
materials
The values of the cohesive and adhesive fracture ener-
gies Gco and Gad in equations (1)–(4), (7) and (8)
vary with respect to the specific location c of the
crack tip in the laminate, and are not readily access-
ible for direct measurement or theoretical predictions
in microscale and nanoscale laminates. However, for
brittle materials, some assumptions and approxima-
tions may be made. In brittle materials, the fracture
energy is proportional to the material tensile mod-
ulus, assuming no (or very little) plastic deforma-
tion around the crack tip [32]. This dependence can
be expressed by equating the local ratio of cohesive
energy/modulus to the global average ratio, Gco/E≈

Ḡco/Ē, where Ḡco is the average cohesive fracture
energy of the entire laminate. Thus, we may approx-
imate the cohesive fracture energy by

Gco ≈
Ḡco

Ē
E. (10)

Ḡco can be estimated from fracture toughness
measurements of entire laminates. So, the variability
of Gco, with respect to the location of the crack tip in
the laminate, is replaced by that of E which is better
known. The prefactor Ḡco/Ē is accessible experiment-
ally and theoretically because these are average prop-
erties of the entire laminate. Similarly, the value ofGad

can be approximated by invoking again the propor-
tionality between the fracture energy and the mod-
ulus in brittle materials, expressed by equating the
local ratio of adhesive energy/modulus to the global
average ratio, Gad/Ead ≈ Ḡco/Ē, where Ead is the stiff-
ness of the interface between laminae. Thus, we may
approximate the adhesive fracture energy by

Gad ≈
Ḡco

Ē
Ead (11)

where the variability of Gad is replaced by that of Ead
which is better known, with the same prefactor as in
equation (10).

Substituting Gco from equation (10) in
equation (1), we get the cohesive failure stress for
a brittle structure:

σco =

[
ḠcoĒE

π cĒ1 (1− ν2)

]1/2
(12)

which in the discrete form is (equation (2)
rearranged)

σco =

 Ḡco

π d(1− ν2)

Ek
∑n

i=1Eiti∑k
i=1Eiti − Ek

(∑k
i=1ti − c

)
1/2

(13)

Similarly, we may substitute Gad from equation (11)
in equations (3) and (4), in order to get the adhesive
failure stress for a brittle structure. However, this is
not necessary, as we may assume for simplicity that
the adhesive failure energy is constant throughout the
laminate, a property of the bondingmatrix. Thus, the
adhesive failure stress equations remain unchanged,
but the constant value ofGad orGad,k can be estimated
by equation (11).

The deflection condition for a brittle structure is
obtained by substituting Gco from equation (10) in
equation (7):

Gad

Ḡco
<

1

4π (1− ν2)(1− c/d)

E

Ē2
. (14)

Note that the variable E on the right side is not
an average but the local stiffness at the crack tip.

6
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A corresponding inequality for a brittle structure is
obtained for the discrete expression (equation (8)):

Gad,k

Ḡco
<

1
4π (1− ν2)

Ekd∑n
i=kEiti − Ek

(∑n
i=kti − d+ c

)
(15)

Here as well, the constant value of Gad or Gad,k

can be estimated by equation (11). Alternatively,
when Gad is not constant, one may substitute the
relationship Gad/Ḡco ≈ Ead/Ē from equation (11) in
equations (14) and (15),making the deflection condi-
tion independent of the fracture energies, dependent
only on the elastic moduli. Specifically, the condition
will depend on the local adhesive stiffness Ead and the
local layer stiffness E. Note that the source equations
(equations (7) and (8)) apply to both ductile and
brittle materials, such that Gco and Gad each may
include both elastic and plastic components, but, as
said, these equations are not as useful due to the vari-
ability of Gco.

2.5. Crack deflection in a laminate with linearly
gradedmoduli
This particular case, somewhat reminiscent of the
graded moduli in the scorpion’s cuticle (discussed
in detail in section 3), demonstrates the impact of
modulus gradation on crack deflection. The follow-
ing gradation analysis makes use of the crack deflec-
tion theory just described. Consider a laminate with
linearly graded modulus ranging from Ē−∆E to Ē+
∆E, expressed by

E= Ē+
(
2
z

d
− 1
)
∆E (16)

where Ē is the weighted-average stiffness of the entire
laminate, and ∆E is the moduli grading range (see
example in the inset in figure 3). A positive (negat-
ive)∆E indicates increasing (decreasing)moduli. The
modulus at the crack tip is obtained by setting z= c.
Using this relation in the failure stresses and deflec-
tion condition equations (see details in the appendix
‘Linearly graded moduli’), we obtain their depend-
ence on the crack length, depicted in the plots in
figures 3 and 4, respectively.

These plots demonstrate that: (i) the failure stress
decreases as the crack is longer, in all cases; (ii) the
stress decreasing rate is steeper in the adhesive stress
compared to the cohesive stress, in all cases, so that
delamination takes over at a certain crack length
where the adhesive stress becomes smaller than the
cohesive stress; and (iii) deflection is more likely to
occur when the crack is propagating towards layers
with gradually decreasing moduli. In other words,
crack deflection from propagation to delamination
tends to occur earlier (at smaller c) when the lay-
ers moduli are decreasing in the direction of the
crack growth. Conversely, when the layers moduli

are increasing, deflection would occur at a longer
crack, even longer than for deflection in a homogen-
ous laminate.

The cohesive and adhesive failure stresses in the
example in figure 3 are calculated using the follow-
ing typical bio-material data: (i) averagemodulus Ē=
8 GPa, based on nanoindentation tests of the scor-
pion endocuticle (Ē= 7.3− 8.5 GPa) [17]; (ii) aver-
age cohesive fracture energy Ḡco = 500 J m−2, based
on fracture toughness measurements of the crab exo-
skeleton (KIc = 1.0− 2.3 MPa m0.5) [33], converted
to energy by the relation Ḡco = K2

Ic/Ē with KIc =
2.0 MPa m0.5; (iii) constant adhesive fracture energy
Gad = 75 J m−2, estimated as 15% of the cohesive
fracture energy, roughly the ratio between themoduli
of the proteinaceous matrix (1− 1.5 GPa) [15] and
Ē (equation (11)); see also the biomimetic adhesive
(Gad

∼= 50− 400 Jm−2) [34]; and (iv) laminate thick-
ness d= 100 µm, similar magnitude as the scorpion
cuticle thickness [16].

The intersections of the cohesive and adhesive
failure stress curves in figure 3, for decreasing, homo-
genous and increasing moduli, are denoted by points
A, B and C, respectively. At these points, crack deflec-
tion from propagation to delamination is expected,
because, for a growing crack, the adhesive stress
becomes lower than the cohesive stress. We see that
deflection occurs much earlier (at smaller crack)
when the modulus is decreasing (point A), compared
to when it is homogenous (point B) or when it is
increasing (point C). We take for example an initial
Griffith crack of length c= 20 µm (the dashed ver-
tical line), which is in the region where the cohes-
ive stress is below the adhesive stress for all three
cases. If the applied stress reaches the cohesive fail-
ure stress, the crack will propagate all the way to the
deflection point, and will then deflect to delamina-
tion. This occurs at c∼= 47 µm for homogenousmod-
uli and c∼= 57 µm for increasing moduli, most likely
leading to a catastrophic failure as about half the lam-
inate thickness ceases to contribute to the structural
strength, compared to only c∼= 23 µm for decreasing
moduli, in which case the structure may still survive.

Figure 4 maps the deflection condition as a func-
tion of the structural resilience (R= 1− c/d, see
definition below), the moduli grading rate for linear
grading (∆E/Ē) (how steeply the moduli are increas-
ing or decreasing), and the ratio between the adhesive
failure energy and the average cohesive failure energy
(Gad/Ḡco). The quantities Ē, Gad and Ḡco are material
properties, whereas c, d and∆E are structural proper-
ties. Using these normalized quantities makes it pos-
sible to obtain a universal plot for the deflection con-
dition in a linearly-graded moduli case. The vertical
axis in figure 4 is expressed in terms of the laminate
resilience (or damage tolerance) in the presence of a
crack c, here defined as
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Figure 3. Cohesive and adhesive failure stresses in a laminate with linearly graded moduli. Three cases are plotted (equation (33)):
(1) modulus increasing (from 4 Gpa to 12 Gpa), (2) modulus decreasing (from 12 Gpa to 4 Gpa), and (3) homogenous material
with modulus of 8 GPa. For each case, both cohesive and adhesive failure stresses are presented. The inset shows the graded
moduli functions for increasing modulus (∆E= 0.5Ē) and decreasing modulus (∆E=−0.5Ē). Inputs: average modulus
Ē= 8 Gpa, average cohesive fracture energy Ḡco = 500 J m−2, constant adhesive fracture energy Gad = 75 J m−2, laminate
thickness d= 100 µm. Points A, B and C are the deflection points from cohesive to adhesive failure for each case.

Figure 4. Resilience (relative damage tolerance) of a laminate with linearly graded moduli. Crack deflection condition expressed
in terms of the resilience R (equation (35)). c is the minimal crack length required for deflection (equation (34)), normalized by
the laminate thickness d. The resilience is plotted versus the interfacial adhesion fracture energy Gad normalized by the average
cohesive fracture energy Ḡco. The resilience is mapped for several values of the moduli grading range∆E, normalized by the
weighted-average laminate modulus Ē. The curve∆E= 0 (thick line) represents a homogenous laminate, the region left to it
(orange) applies to increasing moduli (in the crack growth direction), whereas the region right to it (green) applies to decreasing
moduli. Points A, B and C are examples for given Gad/Ḡco = 0.15 (corresponding to the same points in figure 3), demonstrating
that the laminate is more resilient when the moduli are decreasing. The horizontal dashed line at R= 0.7 shows an arbitrary
failure threshold, which expresses the minimal allowed structural resilience to avoid failure.

R=
σresidual
σstrength

=
w(d− c)

wd
= 1− c

d
(17)

for a laminate with thickness d and width w. The
strength σstrength is the maximum stress borne by a
laminate (no flaw is present), whereas the residual
strength σresidual is the stress a laminate with a crack c

can still bear without failing. In a flawless laminate the
load is spread over an area wd, whereas with a crack
c the load is spread over a smaller area w(d− c), res-
ulting in a stress higher by the ratio of the two areas.
A higher Rmeans that the laminate is more resilient,
in other words a crack in the laminate is more likely
to deflect while it is still small, and the therefore the
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structure is less likely to fail catastrophically in the
presence of flaws. A structure having R= 1 (c= 0)
is highly resilient, whereas a structure having R→ 0
(c→ d) is weak.

In figure 4, on the left side (orange region), the
layers moduli are increasing, whereas on the right
side (green region) they are decreasing. Points A,
B and C are the same deflection points denoted in
figure 3 for decreasing, homogenous and increas-
ing moduli, respectively. Generally, the resilience is
higher (crack deflection occurs at a shorter initial
crack) when the moduli grading rate is lower (smal-
ler (∆E/Ē)). When the grading rate is 1 the resili-
ence is low, improving gradually toward 0-rate where
the resilience is equivalent to that of a homogenous
material; below 0-rate the resilience further improves,
until it reaches a maximum at a rate of −1. The resi-
lience is also higher when the fracture energies ratio
is lower, that is lower adhesive energy and/or higher
cohesive energy. The consequence of high resilience
(crack deflection occurs earlier) is that the failure
would likely not be catastrophic, and therefore the
laminate is tougher and more reliable against a crack
propagating in the direction of decreasing moduli.
Conversely, if the crack would grow in the oppos-
ite direction, that of increasing layers moduli, the
resilience would be lower (deflection would occur
later) and the laminatemight fail catastrophically. For
example, given a required resilience threshold of 0.7
(horizontal dashed line), point A (decreasingmoduli)
is above the threshold and therefore the laminate is
likely resilient, whereas point C is below the threshold
(increasing moduli) and therefore the laminate is not
resilient.

Observing the trends of the deflection condition
in equation (7), when a crack is penetrating a pro-
gressively more compliant media (decreasing Ē2), as
in the case of linearly decreasing stiffness described
above, the right term of the inequality would grow,
consequently increasing the possibility of deflection.
At the same time, the cohesive energy at the crack
tip, Gco, would decrease in proportion to the local
modulus as the crack propagates, the result being
growth of the left term as well, consequently decreas-
ing the possibility of deflection. So, when entering a
more compliant media, both sides of the deflection
condition inequality increase simultaneously in com-
petition. However, Ē2 would degrade more signific-
antly than Gco, because it averages the stiffnesses in a
region with progressively decreasing moduli. In other
words, for a growing crack, Ē2 decreases faster than
Gco in that condition, and the general favorable trend
of the deflection criterion is maintained. By contrast,
in a crack progressing into a stiffer media, as in the
case of linearly increasing stiffness described above,
Ē2 increases faster than Gco, reducing the possibil-
ity of deflection. This is indeed reflected in figure 4,
which shows that when the moduli are decreasing,
in other words the crack propagates into a gradually

more compliant media, the possibility of early deflec-
tion is higher compared to a crack propagating into a
stiffer media.

The earlier crack deflection in a laminate with
decreasing moduli comes at the cost of a lower fail-
ure stress. Supposing again the initial Griffith crack
denoted by the dashed vertical line in figure 3, it
intersects the cohesive failure curves at a somewhat
lower stress in the decreasing moduli case, compared
to the homogenous and increasing moduli cases.
So, there is a trade-off between early crack deflec-
tion (the crack deflects at a lower stress) and initi-
ation of crack growth (the crack starts propagating
at a higher stress). Furthermore, although the aver-
age stiffness of the entire laminatemay not be affected
by graded moduli, there is a risk of a crack devel-
oping in the opposite direction, that of increasing
stiffness, in which case deflection would be undesir-
ably delayed. Thus, the application of a graded stiff-
ness approach in synthetic laminates should be car-
ried out carefully, ensuring that the crack growth dir-
ection can be predicted reliably. For example, lam-
inates with one side located internally and shielded,
whereas the other side exposed to external, possibly
hostile, environment, can be designed with decreas-
ing stiffness from outside to inside, to increase the
probability of non-catastrophic crack deflection.

2.6. Effect of graded layers thickness
We turn now to the analysis of the effect of layer
thickness, separating it from the effect of variable
moduli described above by assuming uniform mod-
uli throughout the laminate. To better understand the
difference between these structural types, we observe
two examples fromnature: (i) a fibrous laminate, such
as that of the scorpion cuticle [15, 16], which con-
sists of soft matrix reinforced by strong chitin fibers.
Such laminates have a hierarchical structure ranging
from nanoscale to microscale, with matching hier-
archical interfaces, and both their layer thickness and
modulus vary with their location in the laminate [1].
Crack deflection can occur in any of the interfaces,
even between two neighboring fibers. This structural
type is described in section 3; (ii) a ceramic lamin-
ate, such as that of the sponge spicule [10–12], which
consists of hard silica layers with soft thin interfacial
layers. The thickness of the silica layers vary with their
location in the laminate, but the modulus is uniform
in all silica layers. Crack deflection can occur only at
the interface between the silica layer, but not inside
the silica because of its high strength. This structural
type is addressed in this section.

We consider a laminate of hard layers (such as
silica) having graded thicknesses, alternatingwith soft
interfacial matrix. We assume that the tensile moduli
and fracture energies of the hard layers and interfacial
layers are constant throughout the laminate. In other
words, the hard layers are taken as homogenous and
isotropic. For the sake of simplicity we also neglect the
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thickness of the thin interfacial layers. Using the lam-
inate deflection condition of equation (15) with con-
stantmoduli and under plane stress conditions we get

Gad

Ḡco
<

1

4π (1− c/d)
or R=

(
4π

Gad

Ḡco

)−1

(18)

where in the second equation we substituted R from
equation (17). The inverse dependence of R on Gad

can be observed in figure 4, using the curve for a
homogenous laminate (thick line) (this can be seen
by substituting∆E= 0 in equation (35) used to gen-
erate this plot).

A shallow crack (c→ 0) would never deflect when
its tip is inside a hard layer, asGad_hard = Ḡco inside an
isotropic layer (the energy to break bonds is the same
in all directions), whereas deflection requires that the
adhesive energy be a least 4π smaller than the cohes-
ive energy. So, a crack tip within a hard layer will likely
keep propagating through the layer, until it reaches an
interface where it might be deflected and bifurcate if
the deflection condition is met (Gad_int ≪ Ḡco).

Note that the deflection condition in
equation (18) is independent of the modulus and
the layer thickness. However, a crack starting from
the face with thin layers will likely deflect at a smal-
ler c compared to a crack starting from the face with
thick layers, simply because it will quickly reach an
interface.

3. Crack deflection in the scorpion cuticle

3.1. The endocuticle structure and varying stiffness
The scorpion chela’s endocuticle (the inner part of the
cuticle) is composed of interleaved parallel Boulig-
and layers and interlayers (figure 5(a), see section 5).
The Bouligand layers thickness ranges from about
2.5 µm at the inner side to about 7 µm at the
outer side (figure 5(b)) [1, 15, 16]. The Bouligand
consists of progressively twisted and tilted laminae
of unidirectional chitin-protein fibers, embedded in
a proteinaceous matrix [15]. The helical laminated
structure is common to all Bouligand layers, but the
number of laminae comprising a single Bouligand
unit is smaller in the inner layers than in the outer lay-
ers. The Bouligand resembles an angle-ply synthetic
laminate, in which each lamina with fibers oriented
in θ direction has a matching lamina in −θ direc-
tion. The chitin fibers in a lamina are held together
by the matrix, protein partially reinforced by metal
ions and chitin fragments, and the laminae are bon-
ded together by the same matrix, in similarity to syn-
thetic composites. However, unlike artificial lamin-
ates, the laminae in the scorpion Bouligand are tilted
out of the main plane, and are rotated around their
edges and not centers, making the structure highly
asymmetrical and warped (figure 6). Refer to descrip-
tion in [15].

The tilting rotation of laminae induces an angu-
lar gap between adjacent laminae, which effectively
reduces the fiber volume fraction in a Bouligand. This
gap is larger in the Bouligands close to the inner side
of the endocuticle (figure 6(a)), and smaller in those
near the outer side (figure 6(b)); this is because the
inner Bouligands have less laminae than the outer
ones, while the tilting range of both is the same,
−90◦ to+90◦. The mean effect of tilting on the fiber
volume fraction Vf, estimated in ‘Fiber volume frac-
tion in a Bouligand’ in the appendix, is:

Vf
∼=

π

4

[
1+

π/2

t/w− 2

]−1

(19)

where t is the total height of a Bouligand, and w is
its lamina width. Thus, the fibers mean volume frac-
tion depends nonlinearly on the Bouligand’s aspect
ratio t/w (height over width): The higher the aspect
ratio, the higher the volume fraction, and vice versa.
Consequently, the endocuticle outer Bouligand lay-
ers are considerably stiffer than the inner layers. This
observation is confirmed by detailed laminate stiff-
ness analysis of Bouligand units with varying height
(see section 5) [15], and is depicted in figure 6(e),
along with the corresponding fiber mean volume
fraction. From outside the endocuticle to its inside,
the Bouligand moduli degrade from about 10 GPa
to 4 GPa in the x-direction, and from about 7 GPa
to 3 GPa in the y-direction. The fiber mean volume
fraction degrades in a similar way from about 55% to
25%.

The Bouligand layers are separated by thin inter-
layers of unidirectional chitin fibers oriented along
the y axis, embedded in a proteinaceous matrix. The
interlayers have variable thickness as well, ranging
from about 1.14 µm at the inner side of the endoc-
uticle to about 2.08 µm at the outer side (figure 5(b))
[1, 15, 16]. The interlayers moduli calculated by lam-
inate analysis, assuming perfect fiber alignment with
the y axis, are 41 GPa in the y direction (chitin fibers
direction) and 3.3 GPa in the x direction [15]. These
values are adjusted to 15 GPa and 5 GPa, respectively,
to accommodate for: (i) the deviation from perfect
fiber alignment as seen in TEM imaging of interlay-
ers, and (ii) the in-plane isotropic moduli observed
by nanoindentation and bending tests of the endoc-
uticle layer [15, 16].

The variation of moduli across the endocuticle
thickness is depicted in figure 7, demonstrating the
abrupt changes between alternating Bouligand lay-
ers and interlayers. Unlike the Bouligand layers, the
interlayers moduli do not vary with respect to their
z-position in the cuticle, even though their thick-
ness does vary, as their fiber volume fraction and ori-
entation are uniform; this is reflected in the narrow
peaks in figure 7. The moving average of the mod-
uli in the x-direction, Ex (dashed line), shows a sig-
nificant nonlinear degradation of the moduli with
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Figure 5. Bouligand layers and interlayers in the scorpion’s endocuticle. (a) SEM picture of an endocuticle cross-section, showing
Bouligand layers and interlayers with varying thickness. The layers are parallel to the xy plane (x is perpendicular to the image
plane). (b) Thickness data of Bouligand layers and interlayers versus the layer number from the endocuticle top (external surface),
with linear fits. [Plot adapted from [1].]

Figure 6. Bouligand laminated structure and elastic moduli. (a) SEM pictures of Bouligand morphology at the inner side of the
endocuticle and, (b) at the outer side of the endocuticle. (c) Model of the Bouligand laminate [15]. (d) Laminae twist and tilt
angular rotations, and definition of lamina cross sectional area b and inter-laminae gap area a. (e) Bouligand elastic moduli, and
fiber mean volume fraction, vs. the Bouligand height, calculated by laminate analysis [15]. Inputs: number of laminae in a
Bouligand (range)m= [19..100], twisting and tilting angular ranges ϕ = [−90◦,+90◦], lamina width w= 1.2 µm, fiber and
lamina thickness D= 49 nm.

the distance from the endocuticle top (from 8.3 GPa
to 2.5 GPa), because the modulus of the Bouligand
layers (wide peaks) is dominant over the modulus
of the interlayers (narrow peaks) in that direction.

By comparison, in the y-direction, Ey moderately
degrades nonlinearly (from 8.5 GPa to 6.1 GPa),
because of the dominance of the interlayers’ moduli
in that direction.
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Figure 7. Layered structure of the scorpion’s endocuticle. Bouligand layers (wide peaks) and interlayers (narrow peaks) inplane
stiffnesses, Ex and Ey, and layers height (thickness) t versus the distance z from the endocuticle top. The stiffnesses are calculated
by laminate analysis, using the results of figures 5 and 6 [15]. The dashed lines are moving averages of the moduli, calculated as
the weighted-average of pairs of adjacent layers.

3.2. Failure stresses and crack deflection in the
endocuticle
The calculated cohesive and adhesive failure stresses
in the endocuticle in the x and y directions
(equations (13) and (4)), as functions of the crack
length, are presented in figures 8 and 9, respectively.
The following endocuticle material data was used
to generate these plots: (i) measured layers thick-
ness and calculated moduli (figure 7); (ii) average
cohesive fracture energies Ḡco,x = 410 J m−2 and
Ḡco,y = 490 J m−2, based on 500 J m−2 (section 2.4)
adjusted for the average modulus in each direction,
Ēx and Ēy. (iii) Constant adhesive fracture energy of
the proteinaceous matrix, Gad = 60 J m−2, estim-
ated as ∼15% of the cohesive energy (section 2.4);
and (iv) laminate thickness d= 125.3 µm (figure 7).
The endocuticle laminate is approximated as brittle,
a state comparable to the dehydrated cuticle samples
investigated in our scorpion studies [15, 16].

We observe the evolution of the failure stresses
for loading in two directions: (i) the x direction
(figure 8), which is the direction perpendicular to the
fibers in an interlayer (perpendicular to the image-
plane in figures 5(a) and 6(a), (b)); and (ii) the y
direction (figure 9), which is the direction coincid-
ent with the fibers in an interlayer (in the image-
plane in figures 5(a) and 6(a), (b)). In each load-
ing case, the surface of the propagating crack is

perpendicular to the loading axis. The general trends
are similar to those in the linearly graded moduli
example (figure 3), in that a propagating crack reach-
ing the deflection point (the cross section between
the cohesive and adhesive curves), will deflect to a
delamination crack because the adhesive failure stress
becomes lower than the cohesive failure stress. Fur-
thermore, when the crack starts at the endocuticle
outer boundary, its deflection will occur much earlier
(for example, c∼= 28 µm in figure 8(a)) than a crack
starting at the inner boundary (for example, c∼=
60µm in figure 8(b)),making the structuremore reli-
able against external cracks. The corresponding struc-
tural resilience is R∼= 0.78 and R∼= 0.52, respectively,
compared to R∼= 0.54 for a homogenous laminate
having the same fracture energies (equation (18)).

The analysis above was carried out for the dry,
brittle state of the endocuticle. In nature, the cuticle
contains moist which acts as a plasticizer, making the
cuticle less stiff and more plastic, causing it to fail at a
lower stress and with amuch larger deformation [16].
This, however, should have low impact on the crack
deflection condition, as expressed in equation (7).
The ratio of fracture energies Gad/Gco will likely
remain similar to the dry state, because the added
plasticity in the wet state may increase the adhes-
ive and cohesive energies in a similar way. Likewise,
the ratio of moduli Ē/Ē2 will likely remain similar
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Figure 8. Cohesive and adhesive failure stresses of the endocuticle laminate in the x direction. x is perpendicular to the interlayer
fibers direction. (a) Crack propagating from outside to inside (decreasing moduli). (b) Crack propagating from inside to outside
(increasing moduli). For each case, both cohesive and adhesive failure stresses are presented. The inset magnifies the region of
crack deflection from propagation to delamination. Inputs: using equations (13) and (4), layers thickness and modulus in x
direction are from figure 7, average cohesive fracture energy Ḡco = 410 J m−2, constant adhesive fracture energy Gad = 60 J m−2,
laminate thickness d= 125.3 µm.

Figure 9. Cohesive and adhesive failure stresses of the endocuticle laminate in the y direction. y coincides with the interlayer fibers
direction. (a) Crack propagating from outside to inside (decreasing moduli). (b) Crack propagating from inside to outside
(increasing moduli). For each case, both cohesive and adhesive failure stresses are presented. The inset magnifies the region of
shallow cracks and indicates possible points of crack deflection from propagation to delamination. Inputs: using equations (13)
and (4), layers thickness and modulus in y direction are from figure 7, average cohesive fracture energy Ḡco = 490 J m−2, constant
adhesive fracture energy Gad = 60 J m−2, laminate thickness d= 125.3 µm.

to the dry state, because the reduced stiffness in the
wet state should decrease the average moduli in dif-
ferent parts of the laminate by the same proportion.
Thus, the point of crack deflection, that is the length
of a Griffith crack at which deflection occurs, should
be similar in both dry and wet states. Bending tests
of cuticle samples demonstrated similar delamination
phenomena in dry and wet conditions, supporting
this deduction [16].

3.3. Complex fracture paths through the
endocuticle
The most noticeable feature in the stress plots in
figures 8 and 9 are the fluctuations of the failure

stresses, caused by the dissimilar moduli and cohes-
ive fracture energies between a Bouligand layer (wide
peaks) and an interlayer (narrow peaks). Such fluctu-
ations may induce peculiar structural behavior, res-
ulting in complex fracture paths through the endoc-
uticle. How do we know what will be the preferred
path selected by the crack? Basically, as described
previously, the preferred path will be determined by
the cohesive and adhesive fracture stresses, such that
the path driven by the lower stress will be favored,
whether propagation or delamination. Because of
the significant stress fluctuations in the cuticle, the
preferred path may alternate between the two crack
types.
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For example, in the x direction, a cohesive failure
in figure 8(b), for a crack whose tip is at a Bouligand
layer (a negative wide peak at say c= 10 µm), might
be arrested when reaching the neighboring interlayer
(a positive narrow peak), because it requires a much
higher stress for propagation; however, a larger initial
crack (say c> 30 µm) whose tip is at an interlayer (a
negative narrow peak),might be arrestedwhen reach-
ing a neighboring Bouligand layer (a positive wide
peak). These fluctuations may even cause a delamin-
ation crack to revert back to a propagating crack. For
example, considering a delamination crack whose tip
is at the Bouligand layer at the deflection point in
figure 8(a), if a Griffith defect a few microns deep is
encountered in the neighboring interlayer, the stress
required for a cohesive failure is about half that of
the adhesive stress, and the crack might revert back
to propagation (the stress threshold is a factor of 2,
see last para. in section 2.3). A probable initial Grif-
fith defectmay be theweak interface in the z-direction
between adjacent Bouligands (the intralayer [15]).

In the y direction (figure 9), the scenario is quite
different, because of the large gap between the high
interlayer stiffness (the positive narrow peaks) com-
pared to the low Bouligand stiffness in this direc-
tion (figure 7). As the interlayer cohesive stress peaks
are always above the adhesive stress, for any given
Griffith crack, a propagating crack whose tip is at an
interlayer will always deflect. Similarly, a propagat-
ing crack whose tip is at a Bouligand layer (a negative
wide peak) will always deflect once it encounters an
interlayer. This may occur for very shallow cracks, in
both the inner and outer crack scenario, as the peaks
of the cohesive failure stress (blue curves in figure 9)
are always higher than the adhesive failure stress (red
curves). Possible deflection points, the occurrence of
which depends on the length of the initial crack, are
indicated by arrows, demonstrating that the struc-
tural resilience in that direction is very high (close to
1). Diversion from delamination back to propagation
may also occur in a shallow inner crack (for example,
c= 7 µm in figure 9(b)), where a possible defect in
a Bouligand layer might initiate a Griffith propagat-
ing crack because of a much lower (by a factor of∼2)
cohesive stress than adhesive stress.

In summary, two complementary crack diversion
mechanisms are active in the endocuticle structure:
decreasing modulus, which is predominant in the
x direction, and fluctuating modulus, which is pre-
dominant in the y direction. In both mechanisms,
cracks are diverted when the applied stress needed for
delamination is lower than that required for propaga-
tion. However, the two mechanisms act differently:
decreasing modulus relies on the average stiffness
of large regions that release and gain elastic energy
as a result of crack propagation, whereas fluctuat-
ing modulus relies on the stiffness variations near
the crack tip. In other words, decreasing modulus

depends mostly on global properties, whereas fluc-
tuating modulus depends mostly on local properties.
Bothmechanisms significantly enhance the structural
resilience with respect to a laminate with uniform
modulus.

3.4. Experimental evidence
The benefit from the proposed crack deflectionmodel
is the ability to investigate different scenarios of load-
ing, laminate configuration, and material properties.
Probing the structure of the scorpion’s cuticle at nano
andmicro scale to track the evolution of cracks across
layers is very challenging and beyond the scope of
this study. However, macroscale mechanical tests car-
ried out in previous studies provide some supporting
evidence for the model. These include: (i) nanoin-
dentation tests at the cuticle cross-section in both
directions [17], and (ii) bending tests of cuticle strip
samples in both directions [16].

In the nanoindentation tests, the nanoindenter
presses a diamond tip against the tested sample,
allowing calculation of the modulus from the force-
displacement curve and hardness from the dent depth
at maximum force. The results of the moduli at the
upper region of the endocuticle were Ex = 8.5 GPa
and Ey = 8.2 GPa (dry samples) [17], in agreement
with the calculated average moduli in figure 7. These
measurements are averages taken at 30 randompoints
on the endocuticle, covering both Bouligands and
interlayers. To isolate the moduli of the standalone
Bouligand, the stiffness of the interlayer was separ-
ated, resulting in Bouligand moduli of Ex = 9.6 GPa
and Ey = 6.6 GPa [15], in agreement with the calcu-
lated average moduli in figure 6(e).

Quasi-static three-point bending tests were car-
ried out, providing the flexural modulus, stiffness,
strength, and toughness. The measured moduli were
Ex = 11.1 GPa and Ey = 7.3 GPa (dry samples) [16],
similar to the nanoindentation results (considering
the different testing method and the added impact of
the other cuticle layers). The correspondingmeasured
strength was σx = 270 MPa and σy = 210 MPa (dry
samples), which, according to the analysis in figure 8
in the x direction and figure 9 in the y direction (for
an outer crack), would initiate a cohesive failure at an
initial crack of size∼10µm. This small predicted crit-
ical crack size, representative of common defects on
the outer side of the cuticle, indicates that the actual
failure might indeed be caused by crack propagation,
rather than by exceeding the ultimate strength. Fur-
thermore, the measured plastic work to fracture was
σx = 1.1 mJ mm−2 and σy = 0.7 mJ mm−2, likely
implying higher energy dissipation in the x direc-
tion due to delamination as a result of an early crack
deflection, as shown in figure 8.

The result in figure 8, deflection at a relat-
ive Griffith crack length of c/d= 0.22, is also in
agreement with the observed experimental fracture
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patterns [16], seen in figure 1 as well. These show
a delamination crack appearing at a typical relative
crack length of c/d= 0.25± 0.05, demonstrating that
deflection indeed occurs fairly close to the external
boundary. The experimental results are also in agree-
ment with the crack deflection predictions presented
in the example in figure 3 for a laminate with linearly
decreasing moduli (c/d= 0.23), which uses mater-
ial properties similar to the scorpion (except for the
absence of the unidirectional interlayers). Finally, the
experimental fracture patterns exhibit a characteristic
diffused damage, with multiple randomly distributed
cracks over a fairly large region, attesting to the com-
plex predicted fracture paths described in the previ-
ous section.

4. Conclusions

Laminated structures are common in biology, con-
sisting of layers of strong and stiff materials with soft
interfaces. The layers are often nonuniform, as in
the scorpion’s exoskeleton where both the thickness
and stiffness are decreasing from outside to inside. A
key question is whether such graded properties con-
fer structural advantages to the animal, which could
be used as inspiration in engineering laminates. The
present study offers an answer to this intriguing ques-
tion, showing that the structural resilience against
fracture is indeed affected by graded layer proper-
ties which, in specific cases, lead to early crack arrest.
A new generalized multi-layer, multi-material ana-
lytical model for crack deflection in layered con-
figurations is proposed, which describes the some-
times counter-intuitive consequences on structures
with graded stiffness and thickness.

The conditions for crack instability in a lamin-
ate with variable laminae thickness and stiffness are
modeled, using linear elastic fracture mechanics. Two
crack types are analyzed: a Griffith crack (cohesive
failure), and a delamination crack (adhesive failure),
both under a tensile load. Of interest is the occurrence
of deflection from the first type to the second, which
occurs when the adhesive failure stress becomes lower
than the cohesive failure stress as the crack propag-
ates. Such deflection avoids catastrophic cracking fail-
ure by diverting the crack, hencemaking the laminate
more resilient. The model is applied to the structure
of the scorpion cuticle, a natural example of a lam-
inate with variable stiffness and thickness across its
layers.

The study shows that a crack propagating in a dir-
ection of decreasing stiffness, will be deflected sooner,
while still small, than a crack propagating in a direc-
tion of increasing stiffness. This result seems counter-
intuitive at first glance, as a propagating crack should
find it easy to enter compliant media (decreasing
stiffness), but, because delamination is even easier
when entering such compliant media, the net result
is higher tendency for crack deflection. The reason

for this is the difference in the way the elastic strain
energy is released and gained during propagation or
delamination.

The advantage of such graded stiffness is demon-
strated by calculationwith the scorpion cuticle, which
has decreasing stiffness and thickness from outside
(the side exposed to the environment) to inside, mak-
ing it less vulnerable to external cracks induced by its
harsh living conditions. In other words, the endoc-
uticle structure ‘sacrifices’ the endurance against
inner cracks in favor of endurance against outer
cracks, which are more common because the exo-
skeleton is directly in contact with the environment.
The cuticle’s unique combination of quasi-isotropic
Bouligand layers and anisotropic interlayers causes
abrupt fluctuations in the failure stresses, which act
to arrest and deflect propagating cracks. Synthetic
man-made structures may benefit from this biolo-
gical example, by incorporating graded moduli and
stiffness fluctuations in the design.

5. Materials andmethods

5.1. Scanning electronmicroscopy (SEM)
The cuticle samples were fixated with 2% glutaral-
dehyde and 3% paraformaldehyde in 0.1 M caco-
dylate buffer (pH 7.3) for 12 h at 4 ◦C, then for addi-
tional 3 d in a fresh buffer, and finally rinsed with
0.1M cacodylate for 10min three times. Post-fixation
was carried out for 1 h with 1% OsO4 in 0.1 M
cacodylate buffer at room temperature, and then the
samples were washed with 0.1 M cacodylate buf-
fer, dehydrated using graded-concentration ethanol,
and dried in a critical point drying machine (Bal-
tech CPD 030). The samples were manually broken
to expose cross-sections of interest, and coated by
gold-palladium alloy using an Edwards (Sanborn,
NY) S150 sputter. SUPRA-55 VP and Sigma 500
(Zeiss, Oberkochen, Germany) microscopes with a
secondary electron (SE2) detector obtained the high-
resolution SEM (HRSEM) imagery, at 5 kV accelera-
tion voltage and 14–15 mm distance. The Bouligand
dimensions and the layers count and thickness were
measured from the SEM images by ImageJ [17].

5.2. Bouligand stiffness modeling
Laminate theory enables analysis of the elastic
deformation under load of a laminate consisting of
parallel laminae (layers) arbitrarily arranged. The
stiffness of the helical structure of the Bouligand
was modeled by classical laminate theory [35], with
modification to reflect the effect of lamina tilting,
which results in non-parallel laminae and hence
non-uniform stress in a lamina. To resolve this non-
uniformity, each tilted lamina was broken down to
discrete sub-laminae, each parallel to the Bouligand
midplane and having uniform stress depending on
its distance from the midplane. Integration of the
stiffness components along each lamina yielded new
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tilting terms in the laminate stiffness matrices, which
depend on the number of laminae in each Bouligand,
derived from the SEM imagery [15].
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Appendix. Cohesive and adhesive failure
stresses

Anisotropic inhomogeneous plate

A laminate is a special case of a continuously aniso-
tropic inhomogenous plate. We start with the general
case of an anisotropic inhomogeneous plate, and then
apply its solution to a laminate. The structure of a
laminate is discrete, as it consists of distinctly separ-
ate laminae, each with different thickness and mech-
anical properties. Thus, to obtain the solution for a
laminate, we discretize the plate solution by convert-
ing it from the continuous space to an equivalent dis-
crete space.

Consider a plate of thickness d and width w
(figure 10), infinite in the x direction, made of a
continuously anisotropic inhomogeneous material
whose mechanical properties—stiffness E(z), cohes-
ive fracture energy Gco (z), and adhesive fracture
energy Gad (z)—vary as a function of the depth z
(inhomogeneity). The plate is subjected to uniform
in-plane stress σ in the x direction. A Griffith crack
of length c, perpendicular to the loading direction,
propagates towards an interface, and can either pro-
ceed in a self-similar fashion or deflect perpendicu-
larly along a length l within the interface. The plate
mechanical properties are anisotropic within the xy
plane, and therefore vary with respect to a given load-
ing direction.

Cohesive failure

The elastic energy released by a crack c in the trian-
gular region with base 2π c and height c (figure 10,
red region), per unit width w of the plate, is given by
integrating the elastic energy density 1

2ε
2E(z) over the

area A= π c2

Ue =
1

2

cˆ

0

ε2E(z)dA (20)

where ε= σ/Ē is the strain, assumed uniform
throughout the plate (prior to cracking), so that it can

be taken out of the integration. Ē= (1/d)
d́

0
E(z)dz

is the plate’s average in-plane stiffness, independent
of c. The triangular region is an approximate repres-
entation of the region where stress is released upon
crack advancement (assuming relatively small c/d),
commonly used to simplify the more elaborate solu-
tion from the theory of elasticity [36–38]. It is also
assumed that the elastic energy gained outside the
triangular region after cracking is negligible, so that
the overall strain remains unchanged and negligible
work is done by the applied stress. The area element
dA (depicted in figure 10) in the triangular region is
dA= 2π (c− z)dz. The elastic energy is then

Ue =
πσ

Ē2
2

cˆ

0

(c− z)E(z)dz. (21)

For a propagating crack (cohesive failure), the
surface energy gained by the crack, per unit width,
can also vary as function of the depth, and is there-
fore obtained by

Us =

cˆ

0

Gco (z)dz (22)

where Gco (z) is the fracture energy at depth z.
The rates of change of these energies with a grow-

ing crack are obtained by differentiating the energies
with respect to c

∂Ue

∂c
=

πσ

Ē2
2 ∂

∂c

cˆ

0

(c− z)E(z)dz

=
πσ

Ē2
2

cˆ

0

E(z)dz=
πσ2cĒ1

Ē2

(23)

where Ē1 = (1/c)
ć

0
E(z)dz is the average stiffness in

the plate upper region, and

∂Us

∂c
=

∂

∂c

cˆ

0

Gco (z)dz= Gco (c) = Gco (24)
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Figure 10. Anisotropic inhomogeneous plate geometry, properties and loading. The plate has thickness d and width w, and is
infinite in the x-direction. The plate is loaded by a stress σ in the x-direction. A crack c in the yz plane reaches an interface and
may deflect into a crack l in the xy plane. The stiffness at the crack tip is E. The average stiffnesses in the region of the crack c and
in the region below it are Ē1 and Ē2, respectively. The fracture energies at the crack tip for cohesive and adhesive failures are Gco

and Gad, respectively. The dashed lines mark the approximate region of strain released due to a propagating crack c, where the
dimension π c is a simplification for the boundary of the stress field. The dash-dotted lines mark the approximate region of strain
released (region 1) and gained (region 2) due to a delaminating crack l. These regions are also colored in the two illustrations at
the bottom.

where Gco is the cohesive fracture energy at the crack
tip. Both derivatives are functions of c, but depend on
it differently: the energy Gco is defined at a specific
location—the crack tip (z= c), whereas the stiffness
Ē1 is defined as an average over the entire upper region
(z= [0, c]).

The condition for crack instability, that is,
propagation, is obtained by equating the energy rates
of equations (23) and (24). Thus, the stress causing
further propagation of the crack (cohesive failure),
σ = σco, is

σco = Ē

[
Gco

π cĒ1 (1− ν2)

]1/2
(25)

This is equation (1). Also added in this equation is
the term 1− ν2 for the effect of Poisson’s ratio in
plane strain condition; in plane stress condition, for
example in a thin plate such as the scorpion’s cuticle,
this term is removed.

Adhesive failure

The elastic energy released by the crack l in the
approximate rectangular region cl (figure 10, red
region), per unit width w of the plate, is given by
integrating the elastic energy density 1

2ε
2
1E(z) over the

area A= cl

Ue1 =
1

2

cˆ

0

ε21E(z)dA=
1

2
ε21l

cˆ

0

E(z)dz=
1

2
ε21lcĒ1

(26)

where ε1 = σ/Ē is the strain, assumed uniform
throughout the rectangular region (prior to crack-
ing), so that it can be taken out of the integration. As

before, Ē= (1/d)
´ d
0 E(z)dz is the plate’s average in-

plane stiffness, and Ē1 = (1/c)
´ c
0 E(z)dz is the aver-

age stiffness in the upper region. The area element
dA (depicted in figure 10) in the rectangular region
is dA= ldz. Similarly, the elastic energy gained in the
rectangular region A= (d− c) l (green region) is
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Ue2 =
1
2

dˆ

c

(
ε22 − ε21

)
E(z)dA=

1
2

(
ε22 − ε21

)
l(d− c) Ē2

(27)

where ε2 = [σ/(1− c/d)]/Ē2 is the strain, assumed
uniform throughout this rectangular region, where
the stress was augmented by the factor d/(d− c)
because the full load is now applied on a smaller cross

section d− c. Ē2 = 1/(d− c)
d́

c
E(z)dz is the region’s

average in-plane stiffness, a function of c. The surface
energy gained by the crack is given by

Us = lGad (c) = lGad (28)

where Gad is the adhesive fracture energy for a
delamination crack at the interface touched by the
crack tip. The work done by the stress (blue region)
is given by

w= (ε2 − ε1) lσd (29)

where (ε2 − ε1) l is the net elongation of the plate, and
σd is the tensile force per unit width of the plate.

To obtain the condition for crack instability, that
is, delamination, the sum of the rates of change of
these energies with a growing crack, obtained by dif-
ferentiating the energies in equations (26)–(29) by l,
should have a zero net change

1
2
ε21cĒ1 −

1
2

(
ε22 − ε21

)
(d− c) Ē2 −Gad +(ε2 − ε1)σd= 0.

(30)

Note that, in this equation, released energy and
work terms have a positive sign, whereas gained
energy and fracture energy terms have a negative sign.
Substituting ε1 and ε2, and solving for the stress caus-
ing a delamination crack (adhesive failure), σ = σad,
we get

σad =

[
2GadĒ

c

(
1− c

d

) Ē2
Ē1

]1/2
(31)

This is equation (3).
In this analysis, we assumed that the strain energy

Ue1 in the rectangular region cl is completely released
and adds up to the growth of the delamination crack.
However, when aGriffith crackmoving at some speed
deflects perpendicularly, a new delamination crack
initiates from a stationary state and starts accelerat-
ing. Thus, at the early stage of delamination, some
strain energy is still stored in this region [18, 28, 30].
As a rough approximation, we assume that this energy
is zero near the Griffith crack (an unstrained free
end), and increases linearly toward the delamination
crack tip, reaching the value of equation (26) at dis-
tance l, where the strain is ε1. Integrating the energy

over that region, 1
l

ĺ

0

(
Ue1

x
l

)
dx= 1

2Ue1, the total

released energy would be reduced by a factor of 2.
Substituting this approximation in equation (30), and
recalculating the adhesive fracture stress at delamin-
ation initiation, a factor of

√
2 should be added to

equation (31) when used for the crack deflection con-
dition (see section 2.3).

Discretization of average stiffnesses

The average stiffnesses Ē, Ē1 and Ē2 are obtained by
integrating the tensile moduli along the z-axis, over
the respective ranges. A laminate is a special case
of a continuously anisotropic inhomogeneous plate,
where the plate is divided into multiple laminae, each
with its own uniform stiffness in the loading dir-
ection. Thus, the stresses for cohesive and adhesive
failures in a laminate can be obtained by discretiz-
ing the anisotropic inhomogeneous plate expressions
(equations (25) and (31)).

Consider a discrete laminate, made of successive
laminae numbered i = [1..n], each of thickness ti and
stiffness Ei in the loading direction, penetrated by a
Griffith crack of length c, whose tip reaches inside
lamina k. The distance from the crack tip to the bot-
tom boundary of lamina k is

∑k
i=1 ti − c and to its top

boundary is
∑n

i=k ti − (d− c) (figure 2). These dis-
tances are used for splitting theweighted contribution
of lamina kmodulus, Ek, between Ē1 and Ē2. Discret-
izing the integrals, the laminate average stiffnesses are
obtained:

Ē=
1

d

dˆ

0

E(z)dz=
1

d

n∑
i=1

Eiti

Ē1 =
1

c

cˆ

0

E(z)dz=
1

c

[
k∑

i=1

Eiti − Ek

(
k∑

i=1

ti − c

)]

Ē2 =
1

d− c

dˆ

c

E(z)dz

=
1

d− c

[
n∑

i=k

Eiti − Ek

(
n∑

i=k

ti − d+ c

)]
. (32)

Linearly gradedmoduli

Consider a laminate with linearly graded modulus of
the form specified in equation (16). The calculation of
the average moduli in the laminate upper part (z< c)
and lower part (z> c) yields (using equation (32))
Ē1 = Ē+(c/d− 1 )∆E and Ē2 = Ē+(c/d)∆E,
respectively, where Ē is the weighted-average stiff-
ness of the entire laminate, and∆E is the moduli
grading range. For simplicity, we assume very thin
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laminae of uniform thickness, so that the equations
for a continuously anisotropic inhomogenous plate
may be used as approximation. The local cohesive
fracture energies are similarly graded, using the rela-
tionship between Gco and the graded moduli E in
brittle materials (equation (10)). We further assume
that the interfacial fracture energy Gad is constant
throughout the laminate, and can be estimated for
brittle materials by equation (11).

Substituting the graded expressions for E, Ē1, and
Ē2 in equations (3) and (12), we get the cohesive and
adhesive failure stresses for a structure with linearly
graded moduli and corresponding graded cohesive
fracture energies:

σco =

[
ḠcoĒ

π c

1+(2c/d− 1)∆E/Ē

1+(c/d− 1)∆E/Ē

]1/2
σad =

[
4GadĒ

c

(
1− c

d

) 1+(c/d)∆E/Ē

1+(c/d− 1)∆E/Ē

]1/2
(33)

depicted in figure 3. Plane stress condition was
assumed for the cohesive failure, and the crack ini-
tiation factor

√
2 was inserted in the adhesive failure

stress. The ratio ∆E/Ē may assume values from −1
to 1.

Similarly, the deflection condition for a struc-
ture with linearly graded moduli and corresponding
graded cohesive fracture energies is given by substi-
tuting the expressions for E and Ē2 in equation (14):

Gad

Ḡco
<

1

4π (1− c/d)

1+(2c/d− 1)∆E/Ē

1+(c/d)∆E/Ē
(34)

depicted in figure 4. This deflection condition can
be expressed in terms of the structural resilience R
defined in equation (17):

Gad

Ḡco
=

1

4πR

1+(1− 2R)∆E/Ē

1+(1−R)∆E/Ē
(35)

leading to R= R(Gad/Ḡco,∆E/Ē), mapped in
figure 4 (the details of this expression are not shown
as they are not instructive).

Fiber volume fraction in a Bouligand

The tilting rotation of laminae induces an angular gap
between adjacent laminae, which effectively reduces
the fiber volume fraction in a Bouligand. The mean
effect of tilting on the volume fraction can be estim-
ated in the following way. Considering a total lam-
inae twisting range of 180◦, the total height of a
Bouligand is t∼=mD+ 2w, where m is the number
of laminae in the Bouligand, w is the lamina width,
and D is its thickness (equal to the fiber diameter)
(figures 6(c) and (d)). The angular gap between adja-
cent laminae is δφ ∼= π/m, enclosing a triangular

cross sectional area of a∼= w2δφ /2∼= πw2/2m. The
rectangular cross sectional area of the lamina is b=
wD, so that the lamina volume fraction in a Boulig-
and is b/(b+ a). Finally, the fiber volume fraction in
a lamina is π/4∼= 0.78 (assuming square packing),
and hence the fiber volume fraction in a Bouligand
is given by:

Vf
∼=

π

4

1

1+ a/b
∼=

π

4

[
1+

π/2

t/w− 2

]−1

. (36)
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