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Plateau-Rayleigh instability and beads formation 

Intermittent beading was obtained by taking advantage of the Plateau-Rayleigh liquid 

instability phenomenon in a cylindrical liquid film. The spontaneous formation of evenly spaced 

drops on a fiber coated by a liquid layer, and the shape of the drops, are widely described in the 

literature, for example in [1]. These are briefly discussed here for completeness and in the context 

of the simulation of the beads frequency, shape and dimensions. 

  

S1. Plateau-Rayleigh instability 

Small curvature perturbations in a cylindrical liquid film cause pressure gradients and liquid flow 

driven by surface tension, such that the liquid surface area and surface energy are minimized, as 

first perceived by Plateau in 1873 [2]. The surface wavelength (and consequently the drop size) is 

determined by the fastest growing instability mode, as shown by Lord Rayleigh in 1873-1879 [3]. 
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Starting with a cylindrical film of thickness 0e  and radius 0r , coated over a fiber of radius b , the 

liquid surface is modulated by the instability with local thickness e  and radius r , resulting in 

varying curvature along the x  axis (Figure S1).  

 

 

Figure S1. Plateau-Rayleigh instability. The fiber radius is b . The dashed lines indicate the initial cylindrical liquid 

coating, with radius 0r  and thickness 0e . The red wavy curves represent a modulation of wavelength   and 

amplitude e  of the liquid surface as a result of instability, with local radius r  and thickness e . The blue curves 

represent the final stable drops.  

 

For weak slopes, the two orthogonal curvatures of the liquid surface at point xr  are 1r  in 

the plane perpendicular to x  and 22 / dxrd  in the plane xr . The local pressure difference 

between the liquid and the surrounding medium is the product of the surface tension   and the 

surface curvature (Laplace equation): 
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where we substituted ebr  . For a periodic surface modulation of wavelength  , if the 

wavelength is larger than the perimeter of the cylindrical coating, that is 02 r  , the pressure is 

higher at the narrow region (small r ) of the wavy surface than in the wide region (large r ). This 

pressure gradient further drives the liquid from the narrow regions to the wide regions, creating 

drop-like surfaces. The process is unstable, as a small disturbance in the original cylindrical shape 

is sufficient to create an initial pressure gradient, which forces liquid flow that increases the 

amplitude of the surface modulation, further increasing the pressure gradient, eventually evolving 

the surface into stable drops. 
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 Given the volumetric force (the pressure gradient), dxpdf / , the flow rate in the x  

direction, per unit length of the film circumference, is proportional to f , and is expressed by 

Poiseuille's law for thin liquid films: 

3

3 fe
Q   (S2) 

where   is the liquid viscosity. Inertia and gravity are negligible for the size scale involved. The 

effect of gravity can be assessed by comparing the Laplace pressure induced by surface tension 

and the hydrostatic pressure due to gravity. The balance between these pressures yields the 

capillary length, a size scale for which the two effects are comparable. The capillary length of the 

liquid epoxy is 5.1/ g mm, ( 40 mN/m is the epoxy surface tension, 9.1 g/mL is its 

density, and g  is gravitation), more than an order of magnitude larger than typical drops formed in 

our study, and therefore the effect of gravity can be neglected for such micro-scale beads. Also 

neglected are viscoelastic effects, which can be ignored when the epoxy is at liquid state, when 

cross-linking by curing has not yet started.  

For thin films, if the film thickness changes at a rate te  / , the flow rate will change over 

a distance dx  by dxte )/(  , and therefore volume conservation is maintained by: 
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Assuming sinusoidal surface modulation of the form qxecos , where e  is the modulation 

amplitude and   /2q  is its wave number (Figure S1), and combining equations (S1)-(S3), we 

obtain the differential equation of the instability: 
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where the characteristic time constant   is: 
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where 00 ebr  . When 10 qr , that is the modulation wavelength is larger than the initial coating 

circumference ( 02 r  ), the modulation amplitude diverges with time ( 1)/exp(   te ), hence 

the instability.  

For each wavelength the instability has a matching characteristic time  , but the fastest 

one is dominant over all the others, and therefore the modulation wavelength is that which 

minimizes the time constant  , that is 1

0)2(  rq  or: 

022 r   (S6) 

The corresponding time constant is: 
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The characteristic growth time of the liquid instability is very sensitive to the liquid coating 

thickness 0e . For example, using 13 Pa s and 40 mN/m for liquid epoxy, the assessed 

growth times for our study range from less than a second for the thickest coating to tens of seconds 

for the thinnest coating. For practical coating thicknesses of several microns or higher, the beads 

formation time should be typically less than 1 s. 

 The flow into drops continues until the remaining liquid film between the drops becomes 

very thin, and balance is reached between the van der Waals forces and the forces induced by the 

Plateau-Rayleigh instability, as predicted by theory [1]. However, this effect accounts for film 

thickness of the order of 10 nm [1], whereas our measurements show a thickness of 100-200 nm, a 

discrepancy that may be explained by the curing of the epoxy resin. When the film thickness 

becomes very thin, the flow's characteristic time is in the order of hours, similar to the epoxy 

curing time. The characteristic time of the flow in a thin film can be derived by the following 

dimensional approach. The pressure difference between the film and a neighboring drop is 

approximately b/  (equation (S1)), assuming the drop radius is much larger than the fiber radius. 

Therefore, the flow force f  (the pressure gradient) along a film length of order   is )/(  b , and 

the Poiseuille's velocity is efQV /)(  (equation (S2)). The characteristic time scales as V/  (to 

within a numerical prefactor): 
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where we substituted 0r  (equation (S6)). The accurate calculation yields a numerical prefactor 

23 . For example, in the case of a fiber of radius 10b µm, whose initial epoxy resin coating is 

of radius 200 r µm, the characteristic time of the flow in a film of thickness 100e nm between 

the drops is about 1 hour. 

 

S2. Bead shape 

A drop created by the liquid film instability eventually stabilizes when the surface tension 

and the pressure reach equilibrium. Consider a liquid drop of diameter D  deposited on a fiber of 

diameter d , and the forces acting on a drop segment extending from 0x  to x  along the fiber 

axis (Figure S2). At the liquid-fiber end contact ( 0x ), the surface tension force 1f  projected on 

the x  axis is Ed  cos , where E  is the liquid-fiber contact angle. At the right side of the 

segment, the surface tension force 2f  projected on the x  axis is  cos2 r , where   is the drop 

slope angle at point rx, . The force 3f  due to the pressure difference p  between the drop and the 

surrounding medium is )4/( 22 drp   .  

 

 

Figure S2. Shape of a liquid drop on a fiber. Forces acting on a drop segment (marked by dashed lines): 1f  and 2f  

are forces due to surface tension, and 3f  is a force due to pressure difference. 
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Force equilibrium yields: 
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The term /p  is obtained at the highest point where 0  and 2/Dr  : 
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Note that the term /p  is equal to the drop surface curvature (Laplace law). Using the 

relationship   2/12
]/1[cos  dxdr , we obtain the differential equation that describes the drop 

geometry [1]: 
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The boundary condition is 2/dr   at 0x . The variables rx,  in this equation can be separated, 

and then integrated (numerically) for given parameters EdD ,, , yielding the drop contour )(rx :  
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By tuning the contact angle and the liquid coating thickness, different bead sizes and 

shapes can be obtained, as demonstrated in Figure S3. 

 

 

 

Figure S3. Bead shape tuning.  Simulation of bead shapes with varying liquid-fiber contact angle E  (upper row) 

and liquid coating diameter 0D  (lower row).   
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S3. Bead dimensions and frequency 

Equation (S12) can be used to calculate the bead length for given D , d  and E . Half the 

drop length is obtained at 2/Dr   , and therefore the full drop length is:  

)(2 2
DxL   (S13) 

a function of D , d  and E . This function was fitted to the diameter and length measurements of 

the epoxy beads (Figure 6 in the main text) with good agreement, where the contact angle served 

as the fitting parameter ( 15E ). Note that the bead length L  signifies the contact length 

between the bead and the fiber, which, for contact angles larger than 90°, is smaller than the 

maximum bead width (see for example the top-right image in Figure S3). 

The distance between adjacent drops (or wavelength) is given by equation (S6): 

02 D   (S14) 

were 00 2rD   is the liquid coating initial diameter (Figure S1), enabling calculation of the drop 

volume. Assuming no volume loss during drops formation, the volume of a single drop is:  

    0
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This volume can be equated to that obtained by calculating the drop's volume of revolution, using 

)(rx  from equation (S12) and L  from equation (S13): 

  
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D
B rdrrxxv   (S16) 

enabling numerical derivation of D  (and subsequently L ) as functions of 0D  for given d  and E . 

Consequently,   can be calculated as a function of D  using equation (S14), fitting well the 

wavelength and diameter measurements of the epoxy beads (Figure 6 in the main text) for 

15E . 

The variables of length dimension in equations (S11)-(S16) can be normalized by the fiber 

diameter d  just by substituting 1d . This allows universal depiction of dD / , dL /  and d/  as 

functions of dD /0 , with only a single parameter E , plotted in Figure S4. For  90E  and thick 
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coating ( dD 0 ), the volume of the drop can be approximated by a sphere having a diameter D , 

and therefore a good approximation is given by (using equation (S15)): 

00
33 88.1

2

36
DD

v
D B 




 (S17) 

Because, as seen in Figure S4, the bead diameter is fairly invariable with respect to E , this 

approximation holds for all values of E . The bead length when  90E  can be approximated by 

DL  , whereas for other values of E  it varies considerably, as seen in the figure. 

 

 

Figure S4. Bead dimensions and frequency. (a) Simulation of bead diameter D , length L  and wavelength  , 

against the coating diameter 0D , normalized by the fiber diameter d . Asymptotic slopes are indicated. The extent of 

the beads created in the current study is marked. (b) Magnification of (a).  

 

 

S4. Beaded fibers volume fraction 

 As described in the main text (Figure 14a), two tight packing structures are basically 

possible with beaded fibers: (i) continuous packing, where each bead is in contact with 

neighboring beads, and (ii) staggered packing, where each bead is in contact with neighboring 

fibers. These packing structures are depicted below (Figure S5), with their representative unit cells. 

Other tight packing structures are also possible. 
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Figure S5. Geometry of beaded fibers tight packing structures. D  and d  are the bead and fiber diameters, 

respectively. The dashed triangle and square represent the unit cell of each packing structure. 

 

 In continuous packing, the edge a  is equal to the bead diameter D , and therefore the area 

of the triangular unit cell is 4/3 2D . The unit cell contains the area of three 60° circular sections 

of a fiber, 8/2d  in total. The volume fraction is given by the area fraction of the fibers in the unit 

cell: 
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In staggered packing, the edge b  is equal to 2/)( dD  , and therefore the area of the 

square unit cell is 4/)( 2dD  . The unit cell contains the area of four 90° circular sections of a 

fiber, 4/2d  in total. The volume fraction is: 
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If the beads get in contact (when 4.2)12/(1/ dD ), the edge b  will be 2/D  and fV  will 

be 2/)/( 2dD . 

The volume fraction in both packing structures converges to 907.0)32/(  fV  

(continuous packing) and 785.04/ fV  (staggered packing) for fibers without beads ( dD  ).  
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