
 1

SUPPORTING INFORMATION 

Local Mechanical Properties of Electrospun Fibers 

Correlate to Their Internal Nanostructure 

Andrea Camposeo, *,†,‡,Ñ Israel Greenfeld, *,§,Ñ Francesco Tantussi,||, ⊥ Stefano Pagliara,†,É Maria 

Moffa,†, ‡ Francesco Fuso, ||, ⊥ Maria Allegrini, ||, ⊥  Eyal Zussman,§ Dario Pisignano,*,†,‡,¶ 

†National Nanotechnology Laboratory of Istituto Nanoscienze-CNR, via Arnesano, I-73100 

Lecce (Italy) 

‡ Center for Biomolecular Nanotechnologies @UNILE, Istituto Italiano di Tecnologia, via 

Barsanti, I-73010 Arnesano, LE (Italy) 

§Department of Mechanical Engineering, Technion - Israel Institute of Technology, Haifa 32000, 

Israel 

|| Dipartimento di Fisica “Enrico Fermi” and CNISM, Università di Pisa, Largo Bruno 

Pontecorvo 3, I-56127 Pisa (Italy) 

⊥Istituto Nazionale di Ottica INO-CNR, Sezione di Pisa, I-56127 Pisa (Italy) 

¶ Dipartimento di Matematica e Fisica “Ennio De Giorgi”, Università del Salento, via Arnesano 

I-73100 Lecce, (Italy) 

 



 2

1. Nanofiber Morphology 

Figure S1 displays the MEH-PPV fiber morphology as obtained by scanning electron 

microscopy (SEM) and atomic force microscopy (AFM). SEM analysis is performed by using a 

Nova NanoSEM 450 field emission system (FEI) operating with an acceleration voltage of 5 kV 

and an aperture size of 30 μm. A thin layer of Cr (<10 nm) is thermally evaporated on top of the 

samples before SEM imaging. Figures S1a,b display the SEM images of MEH-PPV fibers 

deposited on quartz substrates and then analysed by near-field optical analysis. The fibers have 

mean diameters of about 500 nm.   

 

 

 

 

 

 

 

 

 

 

Figure S1. (a, b) SEM images of MEH-PPV fibers. (c, d) AFM topographic map (c) and height 

profile (d) of a MEH-PPV fiber (width 450 nm and height 100 nm.). 

 

The surface topography of the nanofibers is investigated by AFM, employing a Multimode 

head (Veeco Instruments, Plainview, NY) equipped with a Nanoscope IIIa controller and 

c 
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operating in tapping mode. Phosphorous-doped Si tips are employed, with an 8-10 nm nominal 

curvature radius and a resonant frequency of 250 kHz. Figures S1c,d display a typical AFM 

topography map of a MEH-PPV fiber, evidencing a ribbon-shape. Similar results are obtained by 

measuring the fiber topography by the shear-force method with the scanning near field optical 

microscope (Fig. S2). 
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Figure S2. Examples of topography maps of MEH-PPV fibers obtained by the shear-force 

method. The map reported in (a) corresponds to the topography of the fiber displayed in Fig. 3. 

The fiber height is < 170 nm, whereas the width is about 1 μm, in accordance with the ribbon 

shape of the fiber evidenced by both AFM and SEM measurements (Fig. S1). 
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2. Force-Indentation measurements. 

The nanoscale spatial variation of the nanofiber elastic modulus is measured by acquiring 

force (Fload) vs distance curves, by using a Multimode AFM system equipped with a Nanoscope 

IIIa electronic controller (Veeco Instruments). The force vs. distance curves are then converted 

in force vs. deformation plots (Fload vs. δ).S1,S2 The dependence of the applied load on the 

deformation of the sample (δ) is approximated by the Hertz model:S3 
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where R is the tip radius, νt and νf are the Poisson’s ratio of the cantilever (νt =0.27) and of the 

fiber (νf =0.35), respectively, and Et and Efiber are the Young’s modulus of the cantilever (Et =160 

GPa) and of the nanofiber, respectively. The nanofiber Young’s modulus is obtained by fitting 

the force vs. indentation curves to Eq. S1.S4  

Indentation measurements on the surface of fibers (Fig. S3) are performed by applying 

the load, Fload, along a direction perpendicular to the quartz substrate and to the fiber longitudinal 

axis, assuring the absence of bending or buckling of the fiber during the measurement. Indeed, 

AFM images of the investigated region, acquired before and after indentation measurements, do 

not evidence variations of the fiber morphology and position. Due to the finite thickness of the 

fiber deposited on the quartz substrate, these measurements can be affected by the presence of 

the stiffer substrate. B. Cappella et al.S5 have reported a dependence of the measured effective 

elastic modulus on the thickness of the polymer film deposited on glass. In particular they have 

observed an increase of the effective elastic modulus upon decreasing the film thickness, since 

for thinner films the indentation measurement is sensitive also to the mechanical properties of the 

substrate.  
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Figure S3. (a) AFM micrograph of a single MEH-PPV spun fiber. Scale bar: 250 nm. (b) 

Corresponding Young’s modulus (Efiber) map, normalized to the maximum value (Emax). Scale 

bar: 200 nm, color scale shown in the bottom of the Figure. The map is obtained by determining 

the force-distance curves in the region highlighted by a dashed box in (a). (c) Line profiles 

showing the cross-sections of the topography (red continuous line) and of Efiber (blue continuous 

line). (d) Example of applied load (Fload) vs. deformation (δ) curves measured in different points 

of the fiber surface. Each pixel area is 140×140 nm2, and the pixel color shows the local 

normalized Young’s modulus. The curves shown in each pixel have higher slopes for stiffer 

regions, according to (x, y) axes (δ and Fload), respectively, shown in the bottom-right corner. 

The overall analyzed area is highlighted in (a) by a dashed box.  
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They also proposed a semi-empirical analysis that allows to obtain the mechanical properties of 

the polymer film, taking into account its finite thickness.S6 The force-distance measurements 

performed on a fiber deposited on quartz substrate provide therefore an effective elastic modulus, 

possibly affected by the substrate. In particular, for a fiber composed by uniformly distributed 

polymer, larger effective values are expected at the fiber border, due to the reduced thickness 

and to the relatively major contribution from the substrate. Instead, we find a decrease of the 

elastic modulus at the fiber border (Fig. S3), that can be related to the presence of a softer fiber 

sheath, as confirmed by the fiber cross-section measurements discussed in the main paper (Fig. 

2). In Fig. S4, two examples of force vs. indentation (δ) curves, measured at the fiber core and 

sheath, respectively, are shown.  

 

Figure S4. Examples of force vs. indentation (δ) curves measured on the fiber cross-section 

surface in the core (squares) and sheath (circles). The difference of the resulting Efiber is 

evidenced by the different intercepts of the curves with the Fload axis in the bi-logarithmic plot. 

The continuous lines are fits to the data by Eq. S1. 
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3. SNOM measurements 

The spatial variation of the polymer density in the fibers is evaluated by near-field absorption 

microscopy, a measurement allowing to estimate the absorption coefficient, that depends on the 

local density of the absorbing chromophores, according to the Lambert-Beer law. In order to 

obtain maps of the absorption coefficient (α), the light transmitted through the fiber illuminated 

by the optical near field of a tapered fiber is measured simultaneously to its topography. This is 

accomplished by the shear-force method,S7 allowing both the fiber-sample distance to be kept 

constant and the fiber height profile to be obtained in each scan. Examples of fiber topography 

maps obtained by this method are shown in Fig. S2. The map of the absorption coefficient is then 

calculated as: α(x, y) = - ln[T(x, y)]/h(x, y), where T(x,y) is the map of the fiber transmission 

coefficient and h(x,y) is the local, measured fiber thickness, which is fully taken into account in 

this way. Examples of transmittance and absorption coefficient maps obtained in various MEH-

PPV fibers are shown in Fig. S5. 
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Figure S5. (a, c, e) Examples of fiber topography maps, with superimposed contour plots of the 

SNOM transmission data, and corresponding maps of the nanoscale variation of optical 

absorption (b, d, f) respectively.  
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