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S1. Beads contour shape 

The shape of a liquid drop deposited on a fiber is determined by the equilibrium between 

surface tension and pressure (Figure S1). 

 

 

 

Figure S1. Shape of a liquid drop on a fiber. Forces acting on a drop segment (marked by dashed lines): 1f  and 2f  

are forces due to surface tension, and 3f  is a force due to pressure difference. 
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The following differential equation, written with all length variables normalized for convenience by 

the fiber radius (setting 1=fr ), describes the drop geometry (de Gennes et al., 2004; Greenfeld et 

al., 2018) 
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Given br  and c , this equation can be integrated numerically from 1)0( =z  to brlz =)( . The profile 

of the right side of the drop is obtained by symmetry. Using the resulting bead half-length l , the 

volume of revolution of the drop is 
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 To obtain a beaded fiber, polymer drops can each be deposited individually, or created  

spontaneously by liquid coating. When a fiber is coated by a uniform liquid film, evenly spaced 

drops spontaneously form as a result of the Plateau-Rayleigh liquid instability phenomenon (de 

Gennes et al., 2004; Greenfeld et al., 2018). For coating radius 0r , the distance between adjacent 

drops (or wavelength) is given by  

022 r =  (S3) 

Assuming no volume loss during drops formation, the coating volume that fills up a single drop is  
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Equating this volume to that of equation (S2), and solving the cubic equation of 0r  
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So, given the drop-fiber contact angle and the drop peak radius, the beads shape and frequency are 

fully defined (Figure S2). The complete beads profile z  along a multi-beaded fiber is then 1=z  in 
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fiber sections without beads, and )(xzz =  in section with beads, where x  is the longitudinal 

position in the bead local coordinates. 

 

 

Figure S2. Bead shape parameters. Relative bead half-width 𝑙/𝑟𝑓 and beads wavelength 𝜆/𝑟𝑓 vs. the bead relative 

radius 𝑟𝑏/𝑟𝑓, for several bead-fiber contact angles 𝜃𝑐. 

 

 

S2. Rationale for approximate solution of the stresses 

We seek an approximate solution for the differential equation of f  (equation (11)). The 

equation is rewritten with all length variables normalized for convenience by the fiber radius (setting 

1=fr ) 
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where n  is defined in equation (7) and its mean n  in equation (13). The bead profile, z , the local 

radius of the beads along the fiber, is an even periodic function of x  with period   (the distance 

between neighboring beads). Consequently, the dimensionless function n  is also an even periodic 
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function of x  with period  . The examples of n  normalized by n  in Figure S3 demonstrate that n  

can be described as a perturbation around n . The perturbation amplitude grows with the beads size. 

 

  

 

Figure S3. Examples of the function n .  Normalized by the mean value n . The beads profile is shown below for an 

8-beaed fiber (only the right half is shown). The relative bead radius fb rr /  is 1.5 for the left plot and 2.2 for the right 

plot, with volume fraction 3.0=fV . 

 

The particular solution of equation (S6) is ff E1 = . The complementary solution of a 

linear differential equation with periodic coefficients was given by Floquet (Floquet, 1883), and is 

of the general form )cosh()()sinh()( xxBxxAf  += , where A  and B  are constants to be 

derived from the boundary conditions,   is a constant that depends on the coefficients of the Fourier 

series that represents the function n , and   and   are even periodic functions of x  with period  . 

Given the boundary conditions 0)()( ==− LL ff  , we find 0=A  and 

)]cosh()(/[1 LLEB f −= . Thus, the solution for the fiber stress is of the form 
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Using equation (8), the solution for the shear stress is obtained by differentiating f  and is of the 

form 
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Rather than trying to determine   and   explicitly, a difficult task given the implicit structure of 

the function n , itself a function of the implicit bead profile z , we resort to a perturbation approach 

comprising zero-order and first-order approximations. 

The zero-order approximate solutions, given the boundary conditions 0)()( ==− LL ff  , 

were shown for the fiber tensile stress (equation (14)) 
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and for the fiber shear stress (equation (15)) 
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However, these solutions do not reflect the stress fluctuations but just the mean stresses. Thus, we 

look for first-order approximations that would better describe the stress perturbations. 

We start with f , which incurs large perturbations (Figures 5 and 6) as a result of the 

fluctuations in n . To obtain the differential equation of f , we differentiate equation (S6) and 

replace the derivative of f  by f  from equation (8) 
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We make the substitution 2/ˆ nff  =  to arrive at the following differential equation 
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The zero-order form of this equation is obtained by setting nn =   
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and its solution, with the boundary condition 0)0()0(ˆ == ff  , is )sinh(ˆ xnAf = , where A  is a 

constant to be determined. Converting back to f , we get the first-order approximation 

)sinh(ˆ 22

apx xnAnn ff    (S14) 

The mean (zero-order) stress is obtained by setting nn =  in this equation, and therefore 
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This approximation restores the general Floquet solution shown in equation (S8), if the constant   

is substituted by n  and the function )(/)( Lx   is replaced by 22 / nn . Furthermore, the definition 

of the mean value 


/
0

dxnn =  (equation (13)) constitutes the first coefficient in a Fourier series 

of n . Rearranging (using equation (S10)), we retrieve equation (16) 
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where 0f  is given in equation (S10). This first-order approximation comprises a mean reference 

component, 0f , and a perturbation component )1/( 22

0 −nnf  that describes the periodic deviation 

from the mean. 

 The corresponding first-order solution for the fiber stress is obtained by integrating apxf  

from the fiber end toward its center (using equation (8)) 
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Using equation (S16) 
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The first integral yields the zero-order solution 0f , given in equation (S9), and finally equation (17) 

is retrieved 
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This first-order approximation comprises a mean reference component, 0f , and a perturbation 

component that describe the periodic deviation from the mean. Integrating the second integral by 

parts 
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and neglecting the right-hand component, further simplification is achieved (at a small cost in 

accuracy) 
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The zero-order and first-order analytic approximations of the stresses in beaded fiber composites 

are exemplified in Figure S4 and compared to beadless fiber composites. Note that, at the fiber end 

and at its center, the first-order approximation for the fiber stress should coincide with the zero-

order approximation, that is 0)()( 0apx == LL ff   and max0apx )0()0( fff  == . The reason for 

this is that there is no perturbation at the fiber center and at its end because frLzz == )()0( . 

Furthermore, the exact Floquet solution (equation (S7)) at these locations should coincide with the 

approximate solutions when supposing that n= . This leads to the following equality (using 

equation (S19)) 
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which enables accurate numeric derivation of n . 
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Figure S4. Analytic approximations of the stresses.  The fiber tensile stress f  and interfacial stress f , are depicted 

versus the relative position along the fiber, frx / , for beaded fibers with 6 beads (only the right half is shown) and for 

beadless fibers. The loading direction and symmetry plane are denoted. The composite strain is 01.01 = . The 

parameters are as in Figure 5. 

 

 

S3. Tensile stiffness (modulus) approximation 

 We use the zero-order approximations to evaluate the composite stiffness (equation (25) in 

the main text). Executing the integration of equation (19) with 0f  from equation (S9), the average 

fiber stress is 
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Similarly, to obtain the average bead stress we need to calculate the integral of equation (23), using 

b  from equation (22) 
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remembering that b  is the cumulative volume of beads on half a fiber. Executing the inner integral 
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To enable an analytic solution of this integral, we simplify by defining a mean value for z , denoted 

z , where Lzb )1( 2 −=  , and substitute 0f  from equation (S9) and 0f  from equation (S10). The 

zero-order stress approximations are used rather than the first-order approximations, as the mean 

values should be adequate for evaluating the average stress. Executing the integration and 

rearranging 
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Because the Plateau-Rayleigh beading generally maintains a constant ratio between the bead 

diameter and the wavelength (Greenfeld et al., 2018), a good initial guess for z  can be obtained by 

the average 2/)1( + brz . The range of the factor is 10  K  for typical configurations, and it can 

be roughly estimated by bm GGK /1− .  

Substituting the results for f  and b  into the modulus equation (25) (in the main text) 
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The accuracy of this approximation is quite good, as exemplified in Figure S5. Fine tuning 

of n  can further improve the fitting accuracy. When 1/ bm GG , 1K  and equation (S27) can 

be further simplified at the expense of a slightly lesser accuracy: 
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Here, as well, fine tuning of n  can improve the fitting accuracy.  
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Figure S5. Accuracy of approximate composite modulus.  The composite modulus 1E , normalized by the modulus of 

a beadless fiber composite, is depicted versus the fiber aspect ratio, frL / , for several values of the relative bead radius 

fb rr /  and corresponding maximal fiber volume fraction fV . The solid lines are the numerical results at the same 

conditions as in Figure 10c. The dotted lines are the analytic approximations of equation (S27), without fine tuning of 

n  . 

 

 

S4. Stress concentrations induced by neighboring fibers 

The shear-lag elastic analysis assumes averaging of the composite stress and strain over a 

cross section through a large number of fibers. However, for the purpose of identifying the 

composite strength and failure mode, the calculation made in section 7 is approximate, as local stress 

concentrations in the bead, matrix and fiber induced by nearby fibers may change the ultimate 

stresses in these components. The following analysis provides a more accurate calculation of the 

local stresses based on the shear-lag approach, more specifically on the mechanism of load transfer 

from a broken fiber to a nearby intact fiber developed by (Eitan and Wagner, 1991; Wagner and 

Eitan, 1993) and further elaborated by (Grubb et al., 1995). This mechanism is adapted here to the 

equivalent configuration of load transfer from a nearby row of fibers to an affected fiber, where the 

longitudinal gap between two consecutive fibers in the row is analogous to a break in a long fiber 

(except for the minor effect of bonding at the fiber edge). 
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The beaded fiber in question is surrounded by several neighboring beaded fibers, whose 

number and distance is determined by the packing configuration/factor, 𝑃𝑓, and volume fraction, 𝑉𝑓, 

as described in section 2 and Figure 4. All the fibers are of the same length, 2𝐿, and carry the same 

number of beads. We start with a single row of nearby fibers (bright color in Figure S6a), which are 

offset by a distance 𝑙 with respect to the affected fiber (dark color in Figure S6a). The shear stress 

at the surface of these fibers is 𝜏𝑓(𝑥′), where 𝑥′ = 𝑥 + 𝑙 for the left fiber and 𝑥′ = 𝑥 + 𝑙 − 2𝐿 for 

the right fiber, and 𝜏𝑓(𝑥) is known from the analysis in sections 2 and 3. The tensile and shear 

stresses in the affected fiber and its neighbors, prior to load transfer,  are shown in Figure S6b for 

an offset of 𝑙 = 𝐿/2. 

 

 

Figure S6. Stress transfer between neighboring fibers.  (a) Affected fiber (dark color) and a row of nearby fibers 

(bright color) offset by 𝑙. (b) Fibers tensile and shear stresses prior to load transfer [MPa]: affected fiber (solid lines) 

and nearby fibers (dashed lines). The parameters are as in Figure S4. The offset is 𝑙 = 𝐿/2. (c) Load transfer from 

nearby fiber (left) to affected fiber (right): geometry and shear stress vectors. (d) Tensile and shear stresses in the 

affected fiber [MPa] without load transfer (solid lines) and with load transfer (dashed lines); the max shear transfer is 

also shown (dash-dot line). The offset is 𝑙 = 𝐿. 

 

The load transfer model assumes that the shear stress at any longitudinal position 𝑥 

propagates radially from the fibers, and decays inversely proportional to the radial distance 𝑟 

(equation (3)): 
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𝜏 = 𝜏𝑓(𝑥′)
𝑟𝑓

𝑟
   (S29) 

This stress vector, shown at the surface of the affected fiber in Figure S6c, has a component that acts 

in the 𝑥  direction, ∆𝜏𝑓 = 𝜏sin⁡(𝛼) , on a surface segment 𝑑𝑠𝑑𝑥 = 𝑟𝑑𝜑𝑑𝑥/sin⁡(𝛼) . The total 

longitudinal force is obtained by integrating over the fiber face bounded by the −𝜑  and 𝜑 tangent 

lines, 𝑓 = ∫ ∆𝜏𝑓𝑑𝑠𝑑𝑥
𝜑

−𝜑
, yielding 𝑓 = 2𝑟𝑓𝜏𝑓(𝑥′)𝜑𝑑𝑥. Dividing by the surface area of a circular ring, 

2𝜋𝑟𝑓𝑑𝑥, the average shear stress induced on the fiber is given by: 

∆𝜏𝑓(𝑥) = −𝜏𝑓(𝑥′)
𝜑

𝜋
,⁡⁡⁡⁡⁡𝑥′ = {

𝑥 + 𝑙,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≤ 𝐿 − 𝑙
𝑥 + 𝑙 − 2𝐿,⁡⁡⁡𝑥 > 𝐿 − 𝑙

 (S30) 

Thus, the load transfer factor at any point along the 𝑥 direction is 𝜑/𝜋. Note the negative sign which 

indicates that the longitudinal direction of the induced stress is opposite to that of the source stress. 

The angle 𝜑 can be written in terms of the packing factor and volume fraction (equation (1)) 

𝜑 = sin−1(𝑟𝑓/𝑅) = sin−1√𝑉𝑓/𝑃𝑓 (S31) 

Alternatively, 𝜑 may be defined by means of the intersections between effective interaction radii 

(Grubb et al., 1995), beyond which the stress perturbations in the matrix are negligible; this 

definition retains the load transfer concept but yields somewhat higher stress factors. The maximum 

∆𝜏𝑓 occurs at the closest point between the fibers, where 𝑟 = 𝑅 − 𝑟𝑓 (equation (S29)) 

∆𝜏𝑓max(𝑥) = −𝜏𝑓(𝑥′)/ (√𝑃𝑓/𝑉𝑓 − 1) (S32) 

Finally, the change in the fiber stress due to ∆𝜏𝑓 is (equation (8))   

∆𝜎𝑓(𝑥) = −
2

𝑟𝑓
∫ ∆𝜏𝑓(𝑥)𝑑𝑥

𝑥

𝐿

=
2𝜑

𝜋𝑟𝑓
∫ 𝜏𝑓(𝑥′)𝑑𝑥

𝑥

𝐿

 (S33) 

The total stresses with and without the load transfer effect are plotted in Figure S6d for an 

offset of 𝑙 = 𝐿, showing a stress concentration peak in 𝜎𝑓 of magnitude 1 + 𝜑/𝜋 ≅ 1.1. A similar 

stress peak was observed by Raman stress concentration measurements by (Grubb et al., 1995). Also, 

the rise in the shear stress at its highest peak (at the position of the outermost beads) is ~1.06 when 

considering 𝜏𝑓max. However, a more realistic representation of the load transfer should involve the 

load induced by all the nearby neighbors. For 𝑛 close neighbors, arranged so that their offsets are 
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evenly spaced, that is 𝑙 = 2𝐿/𝑛  and 𝑙𝑖 = 𝑖𝑙⁡(𝑖 = 0. . 𝑛 − 1) , the total load transfer obtained by 

equation (S30) is 

∆𝜏𝑓(𝑥) = −
𝜑

𝜋
∑𝜏𝑓(𝑥′𝑖)

𝑛−1

𝑖=0

,⁡⁡⁡⁡⁡𝑥′𝑖 = {
𝑥 + 𝑙𝑖,⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡⁡𝑥 ≤ 𝐿 − 𝑙𝑖
𝑥 + 𝑙𝑖 − 2𝐿,⁡⁡⁡𝑥 > 𝐿 − 𝑙𝑖

 (S34) 

This is demonstrated in Figure S7a for square packing (𝑛 = 4). Note that ∆𝜏𝑓max is not presented in 

these plots because it is not cumulative, as the load transfer of each neighbor appears in a different 

angular section of the affected fiber. It is seen that the effect of load transfer from multiple nearby 

fibers tends to smoothen the stress concentrations, validating the basic shear-lag stress-averaging 

assumption noted at the beginning of this section. The cause for this smoothening is that the shear 

field induced by the fibers positioned with a smaller offset (close to non-staggered) assists the 

affected fiber (that is, reduces its load). This averaging effect will be enhanced if hexagonal packing 

would be used (6 fibers instead of 4), and if the load transfer from farther neighbors would be 

incorporated. Finally, when the longitudinal arrangement is not ordered, the offset positions may be 

arbitrary (Figure S7b), and some skewing of the stresses is observed, but the peak tensile and shear 

stresses in the affected fiber and its interface are not exceeded. Similar results were seen for higher 

stress concentration factors. 

 

 

 

Figure S7. Cumulative stress transfer from 4 neighboring fibers. Affected fiber tensile and shear stresses [MPa], 

without load transfer (solid lines) and with load transfer (dashed lines). The parameters are as in Figure S4. The 

nominal offset is 𝑙 = 𝐿/2. (a) The offset is 𝑙𝑖 = 𝑖𝑙⁡(𝑖 = 0. .3). (b) The offset is distributed uniformly over the range 

𝑙𝑖 − 𝑙/2 ≤ 𝑙𝑖⁡rnd ≤ 𝑙𝑖 + 𝑙/2. 
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