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Abstract

Recent progress in creating micro and nano-scale thermoset polymer fibers

through extensional flow reveals remarkable mechanical properties. For

instance, epoxy microfibers display a notable increase in stiffness, strength,

and toughness as their diameter decreases. This size-dependent behavior,

well-explored and explained in thermoplastic polymers, is far from being

understood in thermoset polymers, as their densely cross-linked network

structure seems to restrain preferential directionality. Our theoretical analy-

sis proposes that, during the pre-gel curing phase, when the thermoset poly-

mer begins clustering but remains in a liquid state, substantial cluster

elongation is induced by the extensional flow. This elongated formation per-

sists to some extent after curing completion, resulting in enhanced mechani-

cal properties along the fiber's primary axis. Concurrently, the high extension

reduces fiber diameter, leading to a power-law diameter dependence of fiber

stiffness. The model agrees well with experimental data from tensile tests on

epoxy microfibers, highlighting the potential to fine-tune mechanical proper-

ties by controlling the curing process, and laying the groundwork for future

improvements.
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1 | INTRODUCTION

Thermosetting polymers are obtained by curing a liquid
resin, a process that creates irreversible, covalent bonds
(crosslinks) between monomers. Unlike thermoplastic
polymers, in which long chains are not crosslinked but
rather reversibly entangled, thermosets cannot be
melted or shaped after curing. The massive crosslink-
ing creates a 3D network that percolates throughout the
cured material, making thermosets strong, hard and stiff,
as well as high-temperature resistant and chemically resil-
ient.1 At the same time, most thermosets are brittle and

prone to fracture as a result of their rigidity, requiring rein-
forcement by strong fibers for load-bearing applications. A
thermoset of wide industrial importance is epoxy, with
applications ranging from structural and engineering
adhesives to electronics encapsulation, protective coatings,
films, and sealing; epoxy is used in aircrafts and satellites
as a composite matrix reinforced by glass and carbon.2,3

Recent application of extensional flow in creating
micro and nano-scale thermoset polymer fibers
revealed remarkable mechanical properties. For
instance, epoxy microfibers exhibit a significant
increase in stiffness, strength, and toughness when
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their diameter is progressively decreased.4–9 In particu-
lar, these fibers become ductile and can elongate more
than twice their length without breaking, implying an
intrinsic structural rearrangement at the nano or
molecular scale. Sometimes called size-dependence,
because below a certain critical size the material prop-
erties grow steeply, this phenomenon has been widely
explored in a variety of materials. Size dependence in
thermoplastic nanofibers has been studied and several
models were suggested, including surface tension, con-
finement, molecular orientation, crystallinity, and den-
sity grading.10,11 By contrast, in thermosets, size
dependence has been scarcely investigated and is little
understood.

The study of thermoset micro and nanofibers pro-
duced by extensional flow is fairly new, applying tech-
niques such as electrical drawing (electrospinning) and
mechanical drawing (pulling) of polymer solution or
neat resin. To the best of our knowledge, no attempt
has been made to model the molecular conformation of
such fibers. The elongation of thermoplastic polymers
under extensional flow has been broadly investigated,
using the concepts of linear flexible chains, con-
fining tube, chain reptation, and chain stretching and
retraction.11–20 The general polymer behavior is similar
in thermosets, consisting of stretching of chains under
the stresses induced by an extensional flow, followed by
partial retraction due to the elastic forces in chains,
which relieves some of the stress and achieves a new
state of equilibrium.21–25 However, the two polymer
types are quite different, and therefore their modeling
differs. Thermoset polymers are not linear but randomly
branched and chemically reactive, they are not
entangled but instead are at overlap concentration near
the gel point, and therefore the notions of confining
tube and chain reptation do not apply.

In this study, we suggest a model based on the molec-
ular rearrangement induced by extensional flow, depen-
dent on the polymer extent of reaction (curing). We
show that above a certain critical strain rate, the
branched polymer sharply elongates, causing an
increase in molecular alignment. This elongation tends
to rearrange polymer clusters from their arbitrary dis-
persion to sequential order. We further show that, after
some relaxation and final curing, the fiber stiffness
(elastic modulus) is proportional to the strain rate
applied during the flow. The high extension also
squeezes the fiber diameter, leading to an inverse-
square power law dependence of the stiffness on diame-
ter. The stiffness model compares well with recent
experimental results. Aspects of the drawing technique
and tuning of parameters are discussed.

2 | THERMOSET POLYMER
CONFORMATION INDUCED BY
EXTENSIONAL FLOW

2.1 | Gelation process

Monomers of a thermoset polymer resin gradually bond
to each other during a curing process, to form clusters
resembling branching trees. Branching occurs when
reacted polymer chain sections cross-link to one another
by bonding. A class of thermoset polymers are epoxy
resins, whose monomers have epoxide end-groups which
react with hardeners like polyfunctional amines, creating
strong cross-links with other epoxy monomers. The clus-
ters grow steadily as the curing process proceeds, until
the gel point is reached, when a first infinite cluster per-
colates through the entire system. The gel point marks
the transition of the polymer solution from liquid state to
solid state. When the gel point is approached, while the
polymer solution is still fluid, the clusters are at overlap
concentration (marginal overlap) with their finite-size
neighbors, but not deeply overlapped as that would result
in chemical reaction making a larger cluster. Our interest
is in modeling the polymer conformation in that state
when subjected to extensional flow, using the critical per-
colation model.26

The cross-linking progress is defined by the extent of
reaction p, the fraction of bonds already formed out
of the maximum possible, ranging from zero to unity. In
a branched polymer without loops, p signifies the proba-
bility of bonds being created from a parent site placed on
a tree lattice. Given the chemical functionality of the
polymer, f , the average number of new bonds per parent
monomer is p f �1ð Þ, excluding the bond to its own
grandparent. For the polymer to keep growing to infinity,
this value should be greater than unity, p f �1ð Þ>1, so
that each new generation has more members on average,
otherwise only finite-size polymers will be created. Thus,
the transition to infinite growth occurs at the critical
extent of reaction which marks the gel point26,27:

pc ¼
1

f �1
: ð1Þ

At the gel point p¼ pc, meaning that at each parent
site one bond on average is reacted out of f �1 possible
bonds, so that some parent sites are bonded to one or
more child monomers while some have not yet reacted
(Figure 1D). An example is a system with one type of
functional group, enabling reaction between bifunctional
(e.g., an epoxy monomer) and trifunctional (e.g., an
amine hardener) species. At a stoichiometric ratio of
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about three epoxy monomers to one triamine monomer
( f ffi 4), pc ffi 0:33 compared to the value of 0.31 identified
by viscosity measurements of epoxy solutions.9 pc may be
different for more complex chemical systems, which are
not discussed here because the effect is just a correction
to the value of pc.

A key parameter which governs the scaling laws is
the relative extent of reaction, defined as:

ε� p�pc
pc

¼ f �1ð Þp�1, ð2Þ

and is related to the characteristic degree of polymeriza-
tion N (sometimes denoted by N�) by26:

N ≈ 2
f �2
f �1

εj j�1=σ ≈ εj j�2:22, ð3Þ

where the critical exponent σ¼ 0:45.26 The prefactor for
f ¼ 4 is 1.33, close to unity. The ≈ð Þ symbol denotes a
scaling relationship, where constants of order unity are
omitted. As ε is negative in the pre-gel domain, the abso-
lute value is used. Thus, the number of monomers in a
cluster, N εð Þ, depends on the reaction progress and
diverges to infinity at the gel point (ε¼ 0). N is an

important variable for determining the solution rheologi-
cal behavior, and consequently the polymer conforma-
tion in extensional flow. The critical percolation model
assumes close packing of monomers on a lattice, a state
not kept when the polymer is diluted by solvent, but the
critical exponents remain of the same type.12

The extent of reaction p depends on the reaction type,
temperature and time. Typically, the curing process of a
thermoset polymer goes through intermediate reactants
before reaching the final product (consecutive reaction),
and therefore the rate of p starts slow and increases with
time.28,29 For instance, in epoxy during pre-gel curing, p
depends roughly quadratically on the time,9 and can be
approximated by p tð Þffi k2 Tð Þt2 (p� 1), where t is the
time from curing start and k Tð Þ is Arrhenius temperature
factor.30 The relative extent of reaction in such a process
would be (Equation 2):

ε¼ p tð Þ
p tcð Þ�1ffi t

tc

� �2

�1, ð4Þ

where, tc is the time from curing start to the gel point.
Although the rate of the reaction p increases with tem-
perature, ε is independent of temperature.
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FIGURE 1 Illustration of polymer cluster conformation in extensional flow. (A) Polymer solution at concentration ϕ and polymerization

degree N , under extensional flow of downstream strain rate s, velocity v, and diameter d. (B) Branched polymer chains (clusters) at rest

(relaxed—top) and during high extension (stretched—bottom). Each chain is colored differently, and is at overlap concentration with its

neighbors (not strongly overlapped). (C) A cluster of size (correlation length) ξ0 at rest (top, of order 10
1 nm) and ξ during extension

(bottom). L (red curve) is a typical contour length between two distant end points on a cluster. (D) Schematic molecular conformation

(detail), for polymer with functionality f ¼ 4 (represented by 4-arm crosslinker, red X), showing partially and fully reacted monomers (typical

number of reacted child bonds is indicated at each site). The monomers are represented by rectangles, where b is the monomer length.
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2.2 | Cluster size and relaxation time

The size of a polymer cluster at rest, prior to applying an
extensional load, is given by its correlation length, ξ0
(Figure 1C), determined by the balance between the
entropic contraction and the excluded volume repulsion
between monomers26:

ξ0 ≈ bN1=D ≈ b εj j�ν � εj j�0:88, ð5Þ

assuming the excluded volume is equal to the monomer
volume. b is the Kuhn monomer linear length,
D¼ 2:53ffi dþ2ð Þ=2 is the fractal dimension of a
branched polymer in spatial dimension d¼ 3, 1=D¼ 0:40,
and ν¼ 1=Dσ is a critical exponent expressing the size
divergence. For instance, the size of an epoxy branched
cluster of 103 monomers is of order 20 nm. The branched
cluster at the pre-gel phase is tenuous, with monomers
volume fraction of b3N=ξ

3
0 ≈N1�3=D ≈N�0:19 (e.g., 0.28 at

N ¼ 1000), but still much more compact compared to lin-
ear chains (N�0:76).

A parameter needed for defining the cluster relative
extension under load is the maximum possible extended
cluster length L (Figure 1C, red line), which in linear
chains is simply bN . To estimate L, the chain section
along the L-path may be approximated by a freely-jointed
linear real chain. Thus, ξ0 ≈ bn~ν, where n is the average
number of monomers along the L-path, and ~νffi 0:588 is
Flory's exponent.26,31,32 Equating with Equation (5), we
obtain n≈N1=~νD ≈N0:67 and therefore the maximum
extended cluster length scales as:

L¼ bn≈ bN1=~νD ≈ b εj j�1=~νDσ � εj j�1:49: ð6Þ

The elasticity of viscoelastic liquids, such as resins of
thermoset polymers, is time-dependent so that the stress
induced by an applied extension decays over time. The
decaying rate is governed by the polymer relaxation time,
τ, that is the time it takes for a stretched polymer to
return to its equilibrium conformation at rest. This char-
acteristic time depends on the polymer size, ξ0 or N , on
the monomer hydrodynamic friction coefficient, and
on the hydrodynamic interaction between the polymer
and its surrounding liquid. These dependencies differ
between diluted and non-diluted resins, as shown ahead.

In case the polymer resin is not diluted (neat resin),
because molecules at overlap concentration are space-
filling with no topological interactions, hydrodynamic
interactions are partially screened, and the relaxation
time of a cluster may be approximated by the Rouse
model26,33:

τ≈
ςN
kT

ξ20 ≈ τ0N
1þ2=D ≈ τ0 εj j� 1=σþ2νð Þ � εj j�3:98 neat resin,

ð7Þ

where, τ0 ≈ ςb2=kT is the relaxation time of a single
monomer (ς is the monomer friction coefficient, k is
Boltzmann constant, and T is the temperature). τ0 is the
time a standalone monomer would diffuse a distance of
its own size. Given the polymer resin viscosity ηr , the
monomer friction coefficient is ς≈ ηrb (Stokes law), and
the monomer relaxation time is τ0 ≈ ηrb

3=kT.
In case the polymer is dissolved in solvent, as is done

when producing fibers by electrospinning,7,9 hydrody-
namic screening may no longer be assumed because the
polymer drags solvent, monomers and small clusters
entrapped in its pervaded volume, and therefore the
Zimm model is more applicable12,26,34:

τ≈
ςξ0
bkT

ξ20 ≈ τ0N
3=D ≈ τ0 εj j�3ν � εj j�2:64 solution: ð8Þ

The overall friction term ςN (Equation 7) is replaced
by ς=bð Þξ0 to reflect the friction of the whole polymer
cluster instead of the cumulative friction of all mono-
mers. The resin viscosity ηr will be that of the resin dis-
solved in solvent.

Determining the monomer friction coefficient ς in
either case is not straight-forward: (i) without solvent
(neat resin), the monomers will sense the viscosity of the
liquid resin, which might be quite high but fairly stable
throughout the pre-gel curing process when most of the
monomers are not yet bonded; for example, typical viscos-
ity of epoxy resin is of order 0.1–10Pa s RT,35 and the
Kuhn monomer length is �1.4 nm (very close to
the chemical monomer length of �1.3 nm),36 resulting in
τ0 � 10�7�10�5 s; (ii) with solvent (solution), the cluster
will sense the viscosity of the solvent mixed with mono-
mers and small clusters, which might vary as the curing
progresses; for example, the viscosity of a solution of
epoxy dissolved in 80% solvent was measured to be
0.003 Pa s RT,9 but quickly increased to 0.2 Pa s closer to
the gel point, resulting in τ0 � 10�9�10�7 s. However,
when the polymer dilution is sufficiently high (but not
too high to cause precipitation and segregation which
may quench gelation),12 we may assume the cluster
senses just the fairly stable viscosity of the solvent sur-
rounding it, as most of the monomers are unreacted or in
small clusters. Evidently, the relaxation time τ is much
faster in the presence of solvent, because τ0 is lower and
the exponent of N is smaller. In practice, the relaxation
time τ might follow the range between the Rouse and
Zimm models.34

4 GREENFELD ET AL.
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2.3 | Cluster elongation

Consider a branched polymer under extensional flow
with a constant velocity gradient (strain rate) s¼rv, a
condition fairly fitting both mechanically5 and electri-
cally7,11,37 drawn fibers (Figure 1A). The cluster is
stretched affinely with the flow (Figure 1B), with a subse-
quent relative extension defined by:

ϵ� ξ

L
, ð9Þ

where, ξ is the stretched size and L is the maximum
extension possible (Equation 6) (Figure 1C,D). Because
stretching is affine with the flow, a polymer
section between any pair of monomers in a branched
polymer is stretched by the same relative extension ϵ.
The cluster elongates at a rate of _ξ¼ ξs, so that its relative
extension rate is _ϵ¼ _ξ=L¼ ϵs. The extension induces a
net elastic force Δf (dimensionless), which tends to
retract the cluster back to relaxed state within the relaxa-
tion time τ (Equation 7 or 8), at a retraction rate of
�Δf =τ. After a short duration, the cluster stretching and
retraction reach equilibrium:

Δf ¼ f ϵð Þ� f ϵ0ð Þ≈ sτϵ, ð10Þ

where, ϵ0 is the extension at rest, and f ϵð Þ is the elastic
force at extension ϵ. The term sτ represents the instanta-
neous stiffness of the cluster, a competition between two
time scales, that of the strain rate and that of the
relaxation.

The retraction force f represents the polymer entropic
elasticity: at small extension, the force is derived from the
elastic free energy of a branched polymer, F ≈ 3kTξ2

2bL ,32,38

so that the force F¼ ∂F
∂ξ ≈ 3kT

b
ξ
L, and in dimensionless

form f ≈ b
kTF ≈ 3 ξ

L ≈ 3ϵ, a linear dependence on the exten-
sion; at high extension, as chain conformations become
less probable, the force rises sharply by a nonlinear func-
tion such as 1�ϵ0

1�ϵ .
11,16,20 Thus:

f ≈ 3ϵ
1�ϵ0
1�ϵ

: ð11Þ

The relative extension at rest is given by (Equations 5
and 6):

ϵ0 ¼ ξ0
L
≈N1=D�1=~νD ≈ εj j�νþ1=~νDσ ≈ εj j0:62: ð12Þ

The exponent of N is �0.28. Other representations of
the force nonlinear rise are known,11,20 affecting the solu-
tion of the stretching equation (Equation 10) and the

resulting rise of the extension; however, the general trend
of rising extension at high stretching is not affected.

The stretching equation bears similarity in form to
the stretching of entangled linear polymer chains.11,20

However, the thermoset polymer size and its relaxation
time are completely different: ξ0 �N0:4 (compared to
�N0:6), L�N0:67 (compared to �N), and τ�N1:8 or 1:2

(compared to �N3), being much more compact and with
faster relaxation. The difference stems from the dissimilar
physical state of the two polymer types. The thermoset
clusters are randomly branched polymers, which, in criti-
cal percolation close to the gel point, are space-filling but
non-interacting with their neighbors, a state termed
hyperscaling.26 By contrast, thermoplastic chains are lin-
ear and therefore larger, and, at sufficiently high concen-
tration, create an entangled network with their
neighbors. The relaxation of a cluster is by diffusing a dis-
tance of its own correlation size, without topological con-
straints. By contrast, a linear chain diffuses a distance of
its own stretched (primitive) length by reptating between
the topological constraints posed by the network, a pro-
cess which takes longer.

The solution of Equation (10) for the full range of
sτ (below and above the stretching transition) is pre-
sented in the Appendix A (Equation A2) and depicted
in Figure 2. The relative extension exhibits a sharp
transition at a critical strain rate sc ¼ 3=τ (or
s=sc ¼ sτ=3), where the extension starts rising steeply with
increasing strain rate. The extension in that region may
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FIGURE 2 Polymer cluster extension. Log-linear trend plots of

the relative extension ϵ (Equation A2) versus the extensional flow

strain rate s. The characteristic degree of polymerization is

N ¼ 102,103,104, corresponding to relative extent of reaction

εj j ¼ 0:143,0:051,0:018 (polymer functionality f ¼ 4). Depicted for

neat resin (polymer without solvent, solid lines) and solution

(polymer with solvent, dashed lines). The cluster relaxation time τ

is given by Equations (7) and (8), with τ0 ¼ 10�6,10�8 s,

respectively, and the initial extension ϵ0 is given by Equation (12).
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be approximated by neglecting the force at rest
(Equation 10, f ϵ0ð Þ� f ϵð Þ):

ϵ≈ 1�3 1�ϵ0ð Þ
sτ

≈ 1�1�ϵ0
s=sc

, s� sc: ð13Þ

The stretching transition occurs at a lower strain rate
when the degree of polymerization is higher (longer
relaxation time) as a result of a more progressed extent of
reaction. The transition occurs at a higher strain rate
when the polymer is dissolved in solvent (faster relaxa-
tion time). Therefore, for the purpose of achieving high
extension and molecular orientation, higher strain rates
are required when producing fibers from solutions, com-
pared to neat resin. The strain rate may be normalized by
the critical strain, making the plot in Figure 3A universal,
with just a single parameter—the degree of polymeriza-
tion N , which represents the extent of reaction.

At the transition point, the equilibrium between stretch-
ing and retraction shifts from small extension to high exten-
sion, which increases the retracting force significantly. The
critical strain rate is given by (Equations 7 and 8):

sc � 3
τ
≈

3
τ0

N� 1þ2=Dð Þ ≈ εj j1=σþ2ν ≈ εj j3:98 neat resin
N�3=D ≈ εj j3ν ≈ εj j2:64 solution,

(
ð14Þ

depicted in Figure 3B. The exponent of ε is positive,
implying that when the gel point is approached (ε! 0),

the critical strain rate tends to zero. Fiber drawing is typi-
cally performed close to the gel point (large N), to ensure
strength and continuity of the flow,5,7,9 meaning that the
extension transition may start at a relatively low strain
rate. This is a positive outcome, because high molecular
extension and orientation are a desirable conformation in
terms of the fibers' mechanical properties, as will be elab-
orated further on.

The extension calculated in this section applies to
large clusters with a characteristic degree of polymeriza-
tion N , as defined in Equation (3). However, near the gel
point, the system consists of a highly polydisperse distri-
bution of polymers,26 a mixture of large clusters, small
clusters, and unreacted monomers. Small clusters and
monomers have very fast relaxation times because of
their low degree of polymerization (Equations 7 and 8),
and therefore their extension will not be retained even
under very high strain rates. Thus, the system may simul-
taneously contain highly stretched large polymers and
relaxed small polymers and unreacted monomers. The
overall molecular orientation is affected accordingly.

2.4 | Molecular orientation

The cluster extended conformation induced by the flow is
accompanied by partial molecular alignment of its mono-
mers in the flow direction. The molecular orientation can
be estimated by placing the cluster on a 3D Cartesian

(A) (B)

FIGURE 3 Polymer cluster normalized extension and critical strain rate. (A) Universal log-linear trend plot of the relative extension ϵ
(Equation A2) versus the extensional flow strain rate s normalized by the critical strain rate sc (Equation 14). The characteristic degree of

polymerization is N ¼ 102,103,104, corresponding to relative extent of reaction εj j ¼ 0:143,0:051,0:018 (polymer functionality f ¼ 4). Applies

to both neat resin (polymer without solvent) and solution (polymer with solvent). The stretching transition occurs at s¼ sc, denoted by the

dashed vertical line. (B) Log–log trend plot of the critical strain rate sc (Equation 14) versus the degree of polymerization N , for neat resin

and solution, for a range of monomer relaxation time τ0. The relative extent of reaction εj j relating to N (Equation 3) is shown in the top

horizontal axis.

6 GREENFELD ET AL.

 26424169, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/pol.20240082 by W

eizm
ann Institute O

f Science, W
iley O

nline L
ibrary on [09/04/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



lattice,26 and assigning the probability P	
i i¼ x,y,zð Þ that

a monomer will be aligned with each of the six possible
directions.11,20 x is the flow longitudinal axis, whereas y
and z are the lateral axes. The (+) and (�) signs indicate
the positive and negative directions of each axis, respec-
tively. The force induced by the flow in each direction is
assumed uniform throughout the cluster, and therefore
the associated probability is uniform as well.

The molecular orientation in a stretched cluster is
calculated by Hermans' orientation parameter,
Os ¼ 3

2 cos2θh i �1
2, where θ is the angle a monomer forms

with the flow direction xþ, and cos2θh i is an average over
all N monomers. Os is zero for arbitrary monomer orien-
tations and unity for full alignment with x. Assigning the
probability P	

i and angle θ	i to each direction,
Os ¼ 3

2

P
P	
i cos

2θ	i
� �� 1

2, where the summation is over all
six directions. This equation is simplified noting that in a
Cartesian lattice θ	y ¼ θ	z ¼ π

2 and θ	x ¼ 0, yielding the
monomers orientation in a stretched cluster:

Os ¼ 3
2

Pþ
x þP�

x

� ��1
2
: ð15Þ

The orientation is irrespective of the positive or nega-
tive direction of x, as both directions contribute to orien-
tation. This is not the case with the relative extension,
because the positive direction contributes to elongation
by a fraction Pþ

x , whereas the negative direction subtracts
from it by a fraction P�

x , and therefore:

ϵ¼ ϵx ¼Pþ
x �P�

x : ð16Þ

This result applies to large clusters, whereas the con-
tribution of small clusters and unreacted monomers to
orientation is negligible because of their fast relaxation.
The weight fraction of large clusters may be approxi-
mated by the extent of reaction p, because near the gel
point these clusters are dominant in size; in other words,
the critical weight-average degree of polymerization of all
clusters is similar to the characteristic degree of polymeri-
zation N . Using this approximation, the overall molecu-
lar orientation in the polymer mixture is given by:

OffiOspffiOspc, ð17Þ

where, near the gel point, p is estimated by the critical
extent of reaction pc. The maximum theoretically achiev-
able overall orientation is pc, about 0.33 for functionality
f ¼ 4 (Equation 1), compared to 1 (full orientation)
achievable in thermoplastic polymers with linear chains.

Using the expressions for Os and ϵ, and the mono-
mers direction probabilities, the orientation solution for
the full range of sτ (below and above the stretching

transition) is presented in the Appendix A (Equation A8)
and depicted in Figure 4 versus the relative strain rate
s=sc ¼ sτ=3. At high stretching, beyond the extension
transition, the cluster's dominant monomer direction is
determined by the probability Pþ

x in the positive stretch-
ing direction, whereas P�

x in the opposite direction is neg-
ligible. Substituting Pþ

x ffi ϵ and P�
x ffi 0, the orientation is

approximated by (using Equation 13 for ϵ):

Offi 3
2
ϵ�1

2

� �
pc ≈ 1�3 1�ϵ0ð Þ

2s=sc

� �
pc, s� sc: ð18Þ

The orientation in this strain rate region is linearly
dependent on the extension, and rises steeply with sτ.
Written in terms of the gelation progress (Equations 12
and 14):

O≈ 1�9 1�N�0:28
� �
2sτ0Nx

� �
pc, s� sc, ð19Þ

where the exponent x¼ 1þ2=Dffi 1:79 for neat resin and
x¼ 3=Dffi 1:19 for solution. N can be expressed in terms
of the relative extent of reaction ε (Equation 3). As
the curing process draws closer to the gel point
(ε! 0,N !∞), the cluster molecular orientation
approaches full alignment of monomers with the flow
direction, and the overall orientation approaches pc.

FIGURE 4 Overall and cluster molecular orientation. Log-

linear trend plots of the overall molecular orientation O and the

cluster molecular orientation Os (Equations 17 and A8) versus the

extensional flow strain rate s normalized by the critical strain rate

sc (Equation 14). The characteristic degree of polymerization is

N ¼ 102,103,104, corresponding to relative extent of reaction

εj j ¼ 0:143,0:051,0:018 (polymer functionality f ¼ 4). The stretching

transition occurs at s¼ sc, denoted by the dashed vertical line. The

maximum achievable overall orientation is given by the critical

extent of reaction, pc ¼ 1=3 (f ¼ 4).

GREENFELD ET AL. 7
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The polymer cluster experiences a sharp transition
from low to high molecular orientation, which occurs at
the critical strain rate sc. Large clusters can achieve very
high orientation (up to 1) at high strain rates, but as their
weight fraction in the system is only about pc, and the
contribution of small clusters and unreacted monomers
to orientation is negligible, the maximum achievable
overall orientation is equal to pc. Fibers are created when
the polymer state is near the gel point but still fluid, and
therefore some relaxation of stretched molecules may
occur until the gel point is finally reached (p¼ pc), but
the general orientation trend is likely retained. Beyond
the gel point, large clusters become part of an infinite
network and their relaxation is mostly inhibited, whereas
small clusters and monomers can still diffuse and bond,
completing the polymer curing (p! 1). The high polydis-
persion of clusters and their low weight fraction near the
gel point limit the orientation degree that can be
obtained in thermoset polymers by extensional flow,
compared to thermoplastic polymers. Molecular orienta-
tion measurements of solid fibers are therefore expected
to be fairly low, but a measured overall value O may
imply a much higher cluster orientation of Os ffiO=pc.

Polarized Raman Spectroscopy of as-prepared epoxy
fibers (diameters 8–20 μm), mechanically drawn from
neat liquid resin, showed a low molecular orientation
index of about 0.1 along the fiber axis at penetration
depth of 5–10 μm.8 Similar tests of such fibers (diameter
120 μm), conducted at NEST in Pisa, also showed negligi-
ble orientation index at the fiber center; however, a scan
across the fiber showed gradual rising of the index
toward the fiber surface up to a significant value of
0.3–0.35, which might indicate nonuniform molecular
rearrangement. In both test campaigns, necked fibers
produced by mechanical drawing of solid fibers exhibited
substantial molecular orientation indices of 0.5–0.75.
Raman depth scan of necked epoxy fibers exhibited uni-
form molecular orientation along the fiber radius, but no
such test was done for as-prepared fibers.8 Further polar-
ized Raman molecular orientation measurements of as-
prepared electrospun epoxy fibers of smaller diameters
are in progress; preliminary results of 2 μm fibers demon-
strate an average index of 0.45, equivalent to O¼ 0:35
which implies high cluster orientation.

2.5 | Supramolecular structure

The described gelation process is reflected in the polymer
solid structure: in critical percolation close to the gel
point, large branched clusters are space-filling but non-
interacting with their neighbors; beyond the gel point,
further curing generates crosslinks between clusters.

Experimental studies of bulk epoxy have shown that its
morphology at nanoscale is inhomogeneous, exhibiting a
nodular structure with a characteristic globular size of
15–45 nm.39–42 The nodule size is of the same order as
typical polymer clusters near the gel point (Equation 5).
Although such morphology sometimes appears in ther-
moplastic polymers as well, these studies attribute the
nodular structure to the curing chemistry of epoxy, and
suggest high covalent bonding density inside the nodules
but lower density in the matrix outside the nodules. Fur-
thermore, correlation was established between nodule
size and ultimate mechanical properties, plastic flow, and
crack initiation and arrest.41 At the gel point, large cross-
linked microgels (clusters), which are too massive to dif-
fuse, come into contact with neighboring microgels and
form crosslinks at their interfaces, creating a nonhomo-
geneous network.42 More recent studies of drawn epoxy
fibers show low orientation in as-prepared fibers, but
high orientation in necked fibers, suggesting reorienta-
tion of the bridging molecular regions between nodules
due to plastic deformation.5,8 This experimental evidence
considered, it is evident that the clusters formation dur-
ing gelation and their size account for the nodular struc-
ture observed after solidification and curing.

The stretched conformation of large clusters has an
important impact on the nodular structure of the solid
fiber. The cluster shape is oblong, elongated by a factor
ϵ=ϵ0 in the fiber axis direction, and shrunk by a factorffiffiffiffiffiffiffiffiffi
ϵ=ϵ0

p
in the lateral directions (assuming constant clus-

ter volume). This means that the density of unreacted
branch ends (dangling bonds) at the cluster tips should
be higher than at its sides. At rest, the probability that
the end of an unreacted branch will be oriented in any
outward direction is 1/6. At high strain rate, the probability
that an end will be oriented longitudinally is about
Pþ
x ffi ϵ≈ 1� 1�ϵ0ð Þ s

sc

	 
�1
(Equations 13 and 16); in the

absence of external force in the lateral directions, half of
the unreacted branches are oriented inward while the
other half outward, and therefore the probability that an
unreacted branch will be oriented sideward (laterally) is
1�Pþ

x
2 ≈ 1

2 1�ϵ0ð Þ s
sc

	 
�1
. This means that the bonding rate

at the edge of a stretched cluster is significantly higher
than at its sides, increasing the likelihood that clusters
will bond to each other in the fiber direction.

A numerical example may clarify this: suppose we
measure (e.g., by Polarized Raman Spectroscopy)8 an
overall fiber orientation of 0.2, which corresponds to
about s

sc
ffi 3, implying cluster orientation of about

0:2=pc ffi 0:6 (Figure 4, N ¼ 103). Then, the longitudinal
probability is about 0.7 (ϵ0 ffi 0:15) whereas the lateral
probability is about 0.14. In other words, the density of
longitudinal unreacted end bonds is about 5 times higher,
so that the likelihood of longitudinal bonding between

8 GREENFELD ET AL.
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clusters is about 5 times higher than lateral bonding (see
illustration in Figure 5D), and about 4.3 times higher
than at rest. The cluster elongates by a factor of about
5 (Figure 3A) and shrinks by a factor of about

ffiffiffi
5

p
, hence

its aspect ratio is about 11, a rod-like shape. Plasma etch-
ing of the surface of bulk epoxy and epoxy fibers supports
this suggestion (Figure 5A,C): while the nodular struc-
ture in bulk is isotropic, the fiber structure exhibits a con-
nected elongated nodular, rod-like network oriented in
the fiber longitudinal (stretching) direction.

The preferred longitudinal crosslinking between clus-
ters may be retained to a large extent even after some
relaxation of the clusters. So, the reorganization of inter-
cluster bonds is imprinted in the network crosslinking

structure, and may impact the elastic and plastic behavior
of the solid matrix. The nodules (former clusters) might
favor a sequential order, creating long chains of nod-
ules, as illustrated in Figure 5D. This formation may
translate into high stiffness, the focus of this study, as
the connectivity of nodules in the direction of the fiber
primary axis is high. It may also translate into high
ductility, which is uncharacteristic of brittle thermoset
polymers, as well as into high strength.5,7 This is likely
the result of the higher mobility of clusters compared
to the omni-bonded bulk matrix (Figure 5D and 5B,
respectively), as well as the alignment of chains to the
fiber axis made possible by the greater drawing ratio
(necked fibers).8

(A)

(C)

(B)

(D)

FIGURE 5 Nodules elongation, directionality, and networking. (A, C) SEM images after plasma surface etching of bulk epoxy (top) and

an electrospun epoxy fiber (bottom). Softer regions are etched deeper and appear black, whereas the nodules appear bright. The small bright

dots are nodule heads protruding from a deeper layer. The stretched nodules in the fiber appear as a connected, elongated, rod-like network,

oriented �23
 ± 19
 with respect to the image frame (0.85 goodness of fit), coincident with the fiber longitudinal (stretching) direction

(orange arrow). The nodules area fraction in the bulk and fiber samples is 29% and 32%, respectively, compatible with pc ffi 0:33. Etching in

both samples was conducted at 3.5 SCCM oxygen flow STP, 40W power, and duration of 12.8min. The clusters direction and area fraction

were measured by imageJ on thresholded images. (B) Illustration of a relaxed cluster with randomly distributed unreacted ends (red dots),

and the matching network with randomly distributed crosslinks. (D) Illustration of a stretched cluster, with most unreacted ends distributed

at its tips (red dots) and less at its sides (black circles), and the matching network with preferred crosslinking in the stretching direction.

GREENFELD ET AL. 9
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3 | SOLID FIBER STIFFNESS

3.1 | Stiffness dependence on orientation

We first calculate the stiffness (in terms of the tensile
elastic modulus) of a stretched cluster, and then esti-
mate the overall stiffness as done for the orientation.
The basic assumption is that, even though some chain
relaxation takes place after the drawing process, the
molecular conformation induced by the extensional
flow is partially retained after solidification and final
curing. We apply an aggregate model,11,43,44 defining a
monomer as a representative volume unit (RVE) with
known axial modulus E1 and lateral modulus E2. E1 rep-
resents the monomer backbone strong covalent bonding
stiffness, and E2 represents the monomer intermolecu-
lar bonding stiffness (mainly weak VDW and hydro-
gen bonds), where typically E1=E2 � 102�103.11,45–47

This estimate is based on the relation E¼ S=r0, where S
is the bond spring constant and r0 is the atomic radius
(“atom size”)46: the spring constant of a covalent bond
ranges within 20–200N/m, and that of a VDW bond
ranges within 0.5–2N/m46; typical covalent radius is
76 pm and Van der Waals radius is 170 pm
(Carbon).46,48,49

Given the average monomer orientation in a clus-
ter, Os (Equation 15), and the related orientation proba-
bilities, the cluster axial (x-direction) tensile modulus Es

can be calculated using a plain iso-stress mixing rule
(that is, uniform stress throughout the cluster). Iso-stress
is more suitable than iso-strain for the stretching of a free
chain section, along which the tension stress is uniform,
analogous to a string of stiff and soft springs connected
serially. For an applied axial stress σ, a monomer aligned
with the fiber contributes a strain σ=E1 in the x-direction,
whereas a monomer aligned laterally contributes a strain
of σ=E2 in the x-direction. The overall strain is obtained
by summing up the strain fractions using the correspond-
ing alignment probabilities:

σ

Es
¼ Px

σ

E1
þ 1�Pxð Þ σ

E2
, ð20Þ

where, Px � Pþ
x þP�

x ¼ 1þ2Osð Þ=3 (inverting Equa-
tion 15). Extracting Os and rearranging, the longitudinal
modulus is:

Es ¼ E0

1�αOs
,whereα¼ 2 E1=E2�1ð Þ

2E1=E2þ1
ffi 1, ð21Þ

where typically E1 �E2. The isotropic modulus (no
molecular alignment) is:

E0 ¼ 3E1E2

2E1þE2
ffi 3
2
E2, ð22Þ

dominated by the intermolecular stiffness. This approxi-
mation is obtained from Equation (20), using Px ¼ 1=3
and neglecting E2 in the denominator as E1 �E2. Fur-
thermore, substituting VDW bond stiffness S¼ 0:5 N/m
and VDW atomic radius r0 ¼ 170 pm, the isotropic modu-
lus is estimated by E0 ffi 3

2
S
r0 ffi 4:4 GPa, in the ballpark of

bulk thermoset polymers.46 The maximum theoretically
achievable cluster modulus occurs when Os ¼ 1, so
that Es ¼E0= 1�αð Þ¼E1.

The polymer morphology consists of a fraction pffi pc
of large stretched clusters which form an elongated net-
work and a fraction 1�pc of amorphous polymer, resem-
bling a fiber-reinforced composite where the connected
elongated clusters are analogous to reinforcing fibers and
the amorphous polymer is analogous to a matrix. Using a
mixture rule fitting such a composite,50 the overall modu-
lus is given by:

E¼EspcþE0 1�pcð ÞffiE0
pc

1�αO=pc
þ 1�pcð Þ

� �
, ð23Þ

where, Os was substituted by O=pc (Equation 17), and O
is given in the Appendix A (Equation A8). The maximum
theoretically achievable modulus is E1pc (Es ¼E1 �E0).
The stiffness solution for the full range of sτ (below and
above the stretching transition) is depicted in Figure 6
versus the relative strain rate s=sc ¼ sτ=3. At high stretch-
ing, beyond the extension transition, the stiffness may be
approximated by (Equation 18):

E≈E0
2pc

3 1�ϵ0ð Þ
s
sc
, s� sc, ð24Þ

where the constant α was approximated by 1. As
ϵ0 ≈N�0:28 (Equation 12) is weakly dependent on N , the
prefactor of order unity may be omitted, and we may
write a scaling rule for the modulus:

E≈E0
s
sc
, s� sc: ð25Þ

The modulus in this high stretching region is propor-
tional to the flow relative strain rate. Written in terms of
the gelation progress (Equations 14 and 3, omitting the
prefactors):

E≈E0sτ0pc
N1:79 ≈ εj j�3:98 neat resin

N1:19 ≈ εj j�2:64 solution

(
s� sc: ð26Þ

10 GREENFELD ET AL.
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Thus, the fiber overall modulus is linearly dependent
on the strain rate, and is a power law of the characteristic
degree of polymerization or equivalently the relative
extent of reaction.

The fiber elastic stiffness rises steeply when the polymer
resin is stretched at a high strain rate larger than the critical
strain rate sc, and the rise is in proportion to the strain rate.
The dominant contribution to this rise is that of large clus-
ters, which can approach the monomer stiffness at very high
strain rates, but as their weight fraction in the system is only
about pc, the maximum achievable overall modulus is
reduced accordingly. This limits the modulus increase that
can be obtained in thermoset polymers by extensional
flow, compared to thermoplastic polymers. The fiber mod-
ulus increases by a power law with the polymer resin rela-
tive extent of reaction at the time of its drawing. Some
cluster relaxation may reduce the stiffness before the gel
point is reached. Thus, processing the polymer as near the
gel point as possible may yield stiffer fibers as well as
lessen the relaxation effect.

3.2 | Stiffness dependence on diameter
and critical diameter

In a volume-conserving extensional flow, the polymer
diameter d decreases with the inverse square root of the

velocity v. The polymer diameter further decreases with
the square root of the polymer volume fraction ϕ due to
evaporation of the solvent (if diluted). Given the polymer
initial diameter d0 and initial drawing velocity (feedrate)
v0, the polymer diameter scales as11,51:

d≈ d0
ϕv0
v

� �1=2

≈ d0
ϕv0
sl

� �1=2

, ð27Þ

substituting v¼ sl, the constant strain rate s multiplied by
the drawing distance l. Modulus transition occurs in
fibers produced by a flow whose strain rate equals the
critical strain rate sc (Equation 14), corresponding to a
critical diameter (or crossover diameter):

dc ≈ d0
ϕv0
scl

� �1=2

≈ d0
ϕv0τ0
3l

� �0:5 N0:90 ≈ εj j�1:99 neat resin

N0:59 ≈ εj j�1:32 solution,

(

ð28Þ

depicted in Figure 7B. The critical diameter is larger
when the extent of reaction is higher, or, in other words,
the modulus transition starts at a higher diameter when
the polymer is closer to the gel point.

As the fiber diameter is inversely dependent on the
square root of the strain rate, the fiber diameter scales as:

d≈ dc
s
sc

� ��1=2

: ð29Þ

The stiffness solution for the full range of d=dc (below
and above the stretching transition) is depicted in
Figure 7A using the solution of Equation (23) with s=sc
substituted by d=dcð Þ�2. Expressing the modulus at high
stretching in terms of the diameter (Equations 24
and 25):

E≈E0
2pc

3 1�ϵ0ð Þ
d
dc

� ��2

≈E0
d
dc

� ��2

, s� sc: ð30Þ

we obtain a power law for the diameter dependence of
the modulus. An approximation for the whole range
of the strain rate is given by:

E≈E0 1þ 2pc
3 1�ϵ0ð Þ

d
dc

� ��2
" #

, ð31Þ

depicted in Figure 7A (dotted curves). This approxima-
tion converges to Equation (30) when d� dc and to
E≈E0 when d� dc, as required.

Starting at the critical diameter, the stiffness rises
steeply with diameter decrease at a power of �2 seen in
the universal plot in Figure 7A. The critical diameter has

FIGURE 6 Overall and cluster tensile stiffness. Log–log trend
plots of the overall tensile modulus E and the cluster modulus Es

(Equation 23) normalized by the bulk modulus E0, versus the

extensional flow strain rate s normalized by the critical strain rate

sc (Equation 14). The characteristic degree of polymerization is

N ¼ 102,103,104, corresponding to relative extent of reaction

εj j ¼ 0:143,0:051,0:018 (polymer functionality f ¼ 4). The stretching

transition occurs at s¼ sc, denoted by the dashed vertical line. The

modulus rise is nearly linear with the strain rate (power slope of

�1). The ratio between the monomer modulus and the

intermolecular modulus is E1=E2 ¼ 103, and the maximum

achievable overall modulus is given by E1pc with critical extent of

reaction pc ¼ 1=3.

GREENFELD ET AL. 11
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a power law dependence on the extent of reaction, with a
positive exponent of the degree of polymerization, indi-
cating that the stiffness rise starts earlier, at a larger diam-
eter, as the process gets nearer the gel point. Also, the
critical diameter depends on the solution and flow parame-
ters, including polymer concentration, initial diameter, ini-
tial velocity, drawing distance, and monomer relaxation
time. The latter parameter is viscosity dependent, so that
the critical diameter is much smaller for a solution com-
pared to a neat resin (Figure 7B). According to the sug-
gested model, the stiffness is not directly impacted by the
diameter. Rather, two independent processes are affected by
the extensional flow—molecular alignment and diameter
shrinkage. The molecular alignment, and consequently the
stiffness, is proportional to the flow strain rate, whereas the
diameter shrinkage is inversely proportional to the square
root of the strain rate. Put together, we obtain the inverse-
square power dependence of the stiffness on the diameter.
This effect is sometimes termed size dependence or size effect,
as the stiffness diameter-dependence is readily observable in
mechanical tests, but this term is somewhat misleading
because it disregards the role of the molecular conformation.

Experimental measurements of epoxy fibers elastic
modulus are presented in Figure 8. These fibers were pro-
duced by extensional flow, either mechanically drawn
(pulled) or electrically drawn (electrospun) from neat resin
or solution with various solvents and concentrations. The
data spans a wide range of diameters (see inset), depending

on the solution composition and the drawing technique,
and was therefore collapsed into a single plot by normaliz-
ing the diameter by the critical diameter. The trend of rising
modulus with decreasing diameter is vindicated and agrees
fairly well with the theoretical prediction (solid curves). The
log–log plot (Figure 8B) demonstrates the power law of the
modulus diameter-dependence. The data in each test group
is somewhat dispersed because, unlike similar data of ther-
moplastic fibers,11 the degree of polymerization N is not
stable due to the spontaneous continuation of the curing
process during testing of a large number of samples. N
diverges quickly near the gel point: an uncertainty in N
by a factor of 1.5–2 causes a change in dc (Equation 28)
of about ±50% (dashed curves).

The critical diameter values used to scale the modulus
data of each test group (Figure 8 legend) are generally inline
with the prediction of Equation (28): (i) The neat epoxy
resin has indeed a much higher dc than that of the other
groups which are diluted solutions, because of its higher
concentration (ϕ¼ 1) and larger exponent of the poly-
merization degree N . (ii) The dc of the pulled solutions is
much higher than that of the electrospun solutions,
because of larger initial diameter d0 and shorter drawing
length l. (iii) Solutions of the same solvent and drawing
technique have larger dc when ϕ is higher.

Generally, observing Figure 8, electrically drawn
fibers (open symbols) can achieve higher rise in modulus
compared to mechanically drawn fibers (solid symbols).
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FIGURE 7 Fiber tensile stiffness and critical diameter. (A) Log–log trend plots of the overall tensile modulus E and cluster modulus Es

(Equation 23) normalized by the bulk modulus E0, versus the fiber diameter d normalized by the critical diameter dc. The characteristic

degree of polymerization is N ¼ 102,103,104, corresponding to relative extent of reaction εj j ¼ 0:143,0:051,0:018 (polymer functionality f ¼ 4).

The stretching transition occurs at d¼ dc, denoted by the dashed vertical line. The modulus rises with the decrease in diameter at a power

slope of �2. The ratio between the monomer modulus and the intermolecular modulus is E1=E2 ¼ 103, and the maximum achievable overall

modulus is given by E1pc with critical extent of reaction pc ¼ 1=3. Approximations are depicted by dotted curves (Equation 31). (B) Log–log
trend plot of the critical diameter dc (Equation 28) versus the degree of polymerization N , for neat resin and solution, for a range of

monomer relaxation time τ0. The relative extent of reaction εj j relating to N (Equation 3) is shown in the top horizontal axis.
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This is primarily due to the higher strain rate achievable in
the former technique, and the consequent smaller diameter
(Equations 27 and 30), the subject of the next section. The
achieved rise in modulus, which was up to about a factor of
7, is still far from the maximum possible theoretically,
Emax
E0

¼ E1pc
3E2=2

(Equations 22 and 23), which is in the order of
20–200 (E1=E2 ¼ 102�103 and pc ¼ 1=3). This indicates
that the clusters' molecular orientation in the tested
fibers did not approach the maximum, possibly due to par-
tial relaxation of stretched chains within the time gap
between fiber deposition and final curing. Relaxation may
be slowed down, for instance, by allowing a longer extent
of reaction (larger N) prior to fiber processing (see Equa-
tions 7 and 8). Other tuning parameters may be applied
as well, detailed in the next section. Further experiments
may extend the fiber diameters to the sub-micron range,
to achieve higher orientation and modulus rise.

3.3 | Mechanical and electrical drawing
effects

The polymer molecular state under extensional flow is
determined by the ratio between the flow strain rate s
and the critical strain rate sc ¼ 3=τ (Equation 14). sc is a
solution property that depends on the monomer

relaxation time τ0 and the degree of polymerization N
(or, equivalently, the relative extent of reaction ε). s is a
function of the applied extending stress σ and the solu-
tion viscosity η (Newton's law of viscosity):

s≈
σ

η
≈

σ

G τð Þτ : ð32Þ

The viscosity of viscoelastic liquids is generally
expressed by η≈G τð Þτ, where τ is the relaxation time and
G τð Þ is Rouse relaxation modulus at that time.26 The
modulus in a liquid is high when a step strain is induced,
and decays over time t as the stress decays, and therefore
it is defined as a function of time, G tð Þ. The characteristic
time of the liquid is its relaxation time τ, so that its char-
acteristic modulus is G τð Þ. The relaxation modulus is of
order kT per polymer cluster, analogous to a polymer
network of strands (that is, clusters) having entropic elas-
ticity; the number density of clusters is proportional to
P=ξ30 where P is the overlap parameter (the average num-
ber of clusters within the pervaded volume of a cluster)
and ξ0 is the cluster size (Equation 5).26 As branched
polymers near the gel point are space-filling but non-
interacting, the overlap parameter in a neat resin is
P¼ϕ¼ 1, that is no overlap. In a solution, solvent fills
some of the space, and therefore P is equal to the polymer

(A) (B)

FIGURE 8 Experimental evidence of fiber modulus diameter-dependence. The fibers were mechanically drawn (pulled, solid symbols)

and electrically drawn (E-spun, open symbols) from neat resin or solution, at different compositions. The raw data are shown in the inset

(log–log), of which the first group5 and second and fourth groups7 were published. The modulus E is scaled by the bulk modulus E0 (1GPa

for pulled fibers and 0.7GPa for electrospun fibers). The fiber diameter d is scaled by the critical diameter dc (or crossover diameter)

approximated for each data group (see legend). The theoretical solution (solid curve, degree of polymerization N ¼ 103, extent of reaction

p¼ 1=3) is depicted for comparison (Equation 23), with ±50% margins (dashed curves) for dc uncertainty with respect to the gelation

progress (Equation 28). (A) Liner plot. (B) Log–log plot.
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volume fraction ϕ. Hence, the relaxation modulus is
given by:

G τð Þ≈ ϕkT

ξ30
≈

ϕkT

b3N3=D : ð33Þ

The relative strain rate is:

s
sc
≈ sτ≈

σ

G τð Þ ≈
σb3

ϕkT
N1:19: ð34Þ

The result in Equation (34) can be used in the modu-
lus equation to assess its parametric dependencies. Thus,
the modulus approximate solution in Equation (24) can
be written as:

E≈
2pcE0

3 1�ϵ0ð Þ
σb3

ϕkT
N1:19,s� sc, ð35Þ

where, ϵ0 is given by Equation (12). This equation sum-
marizes the modulus rise dependence on the material
and process parameters: monomer length b, polymer
functionality f and corresponding pc (Equation 1), solu-
tion concentration ϕ, ambient temperature T, gelation
(curing) state N or ε, and applied stretching stress σ.

The applied stress σ depends on the technique
employed to produce the extensional flow, whether
mechanical drawing (pulling)5 or electrical drawing (elec-
trospinning).7,11,37 In electrical drawing, the density of the
electric charge induced in the jet is proportional to the elec-
tric field intensity E∞ (not to be confused with the modu-
lus), and therefore the electric shear stress acting on the
jet surface far from the orifice is proportional to the elec-
tric field squared, E2

∞. Using dimensional analysis, we
find that the electrospinning stress does not depend on
the viscosity (surface tension neglected), and the scaling
exponents of the other parameters can be derived:

σEspin ≈E2
∞

ε0d0K
v0

� �1=2

, ð36Þ

where, Espin stands for electrospinning, ε0 is the perme-
ability of free space, d0 is the injector inner diameter, v0
is the jet feed velocity, and K is the solution electric con-
ductivity. Other analyses yield slightly different
exponents,11,52,53 but with the same trends.

In typical mechanical drawing, the extension is
applied by constant pulling velocity v� v0 rather than
constant force. In that case, the strain rate (assumed con-
stant) is expressed by

s≈
v� v0

l
≈
v
l
, ð37Þ

where, l is the drawing distance. Using Stokes law, the
force on a monomer of size b scales as ηrbΔv, where ηr is
the resin or solvent viscosity, and Δv¼ sb is the velocity
difference along the monomer size. In terms of monomer
stress, we have ηrbsb=b

2 ¼ ηrs, and the average stress
within the solution is ηrsϕ, proportional to the monomers
area (volume) fraction. Using s from Equation (37) we
obtain the pulling stress at constant pulling velocity:

σMpull ≈
ηrϕv
l

, ð38Þ

where, Mpull stands for mechanical pulling. Substituting
the stress expressions from Equations (36) and (38) in
Equation (35), the parametric dependence of the modu-
lus is obtained:

E≈
2pcE0b

3N1:19

3 1�N�0:28
� �

kT

E2
∞
ϕ

ε0d0K
v0

� �0:5

Espin

vηr
l

Mpull

8>><
>>: s� sc, ð39Þ

where, N may be expressed by the extent of reaction ε
(Equations 2–4). Interestingly, the electrospun modulus
is independent of the spinning distance whereas the
pulled modulus is independent of the concentration.

Similarly, the fiber diameter stress-dependence is
(Equations 27, 32, 33, 7, and 8):

d≈ d0ϕ
v0ηr
σl

	 
0:5 N0:30 neat resin

N0 solution

�
s� sc: ð40Þ

Unlike the modulus, the diameter is weakly depen-
dent on the degree of polymerization. Substituting the
stress expressions from Equations (36) and (38) in
Equation (40), the parametric dependence of the diame-
ter is obtained. For pulling it simply results in
Equation (27), and for electrospinning of a solution it is
given by:

d≈
d0ϕ
E∞

v0ηr
l

	 
0:5 ε0d0K
v0

� ��0:25

s� sc: ð41Þ

The electrospun diameter is independent of the veloc-
ity whereas the pulled diameter is independent of the
spinning distance.

These expressions provide a roadmap for tuning the
material and process parameters to achieve desired fiber
stiffness and diameter. For a given polymer type, the
solution concentration (Figure 8), the temperature, and
the extent of reaction9 can be controlled. In electrical
drawing, the applied field, the feedrate and the spinneret

14 GREENFELD ET AL.
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diameter can be controlled,7 as well as the solution con-
ductivity by selection of solvents (Figure 8) and additives
such as salt.54 In mechanical drawing, the drawing velocity
and distance may be controlled.5 Generally, electrospinning
has more tunable parameters, making it more amenable for
high stiffness small diameter applications, as demonstrated
in the epoxy fiber tests in Figure 8. Evidently, the stress in
the extensional flow, driven by the electric field E∞ or the
pulling velocity v, should be within the bounds that
ensure formation of a continuous jet.51

4 | CONCLUSIONS

Thermoset polymer fibers such as epoxy microfibers exhibit
a significant increase in stiffness, strength, and toughness at
small diameters, making them likely candidates as compo-
nents for structural applications. In this study, we described
the molecular conformation of thermoset polymer solutions
in extensional flow, and suggested a theoretical model to
correlate the mechanical properties, specifically the stiffness
(elastic modulus), with solution composition, extent of cur-
ing reaction, and flow conditions.

We have shown that two physical processes occur
simultaneously—the hydrodynamic stretching of
branched polymer molecules (clusters) and the narrowing
down of the jet diameter. When the flow strain rate is faster
than the polymer relaxation time, a conformational transi-
tion occurs, and the molecular extension becomes signifi-
cantly high and stable. Cluster extension is accompanied by
molecular orientation which results in stiffness increase in
the solidified fully-cured fiber. The extension also rear-
ranges the fiber's nodular structure in a sequential order,
creating long chains of nodules. The correlation between
stiffness and fiber diameter is expressed by an inverse-
square power law, and the modulus rise transition point is
characterized by a critical diameter, in agreement with
experimental data. This correlation does not imply that the
modulus depends directly on fiber diameter, but rather that
the extensional flow affects both simultaneously.

Based on the model, we show how desired fiber stiff-
ness and diameter may be achieved by tuning material
and process parameters. Tuning optimization may have
sustainability benefits in reducing material waste. The
unique size-dependent behavior of thermoset fibers is not
limited to stiffness, and we plan further theoretical inves-
tigation of the strength and toughness based on similar
premises as for the stiffness.
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APPENDIX A: EXTENSION AND ORIENTATION
FULL SOLUTION

This appendix provides full mathematical solutions for
the extension and orientation.

A.1. | Extension

Substituting the tension force (Equation 11) into the
stretching equation (Equation 10):

3ϵ
1�ϵ0
1�ϵ

�3ϵ0 ≈ sτϵ, ðA1Þ

and solving the quadratic equation, the cluster relative
extension as a function of the strain rate is obtained20:

ϵ≈
1
2

1� 3
sτ

� �
þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 3

sτ

� �2

þ12ϵ0
sτ

s2
4

3
5: ðA2Þ

Approximations yield ϵ≈ ϵ0 1þ 1�ϵ0ð Þsτ=3½ � for low
sτ and ϵ≈ 1�3 1�ϵ0ð Þ=sτ for high sτ. Note that ϵ0 is not
negligible in a branched polymer; for example, for
N ¼ 103, ϵ0 ≈N�0:28 ffi 0:15 (Equation 12). By comparison,
in a free linear chain with the same degree of polymeriza-
tion, ϵ0 ≈N�0:41 ffi 0:06.

A.2. | Orientation

Given a force Fi acting on a monomer in direction i, and
the corresponding normalized force f i ¼Fib=kT, the sta-
tistical Boltzmann factor is e�Fib=kT ¼ e�f i . Thus, the prob-
ability that a monomer will align in direction i is given
by11,20

P	
i ¼ e∓ f i

2Q
, i¼ x,y,z: ðA3Þ

The partition function in the denominator,
Q¼P

i
cosh f i ¼ cosh f þ2cosh f 0, ensures that the sum of

16 GREENFELD ET AL.
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all alignment probabilities equals unity. The stretching
force in the longitudinal direction x is f x ¼ f εð Þ¼ f , and
in the lateral directions it is approximately the same as at
rest f y ¼ f z ¼ f ε0ð Þ¼ f 0. The monomer alignment proba-
bilities are:

P	
x ¼ e∓ f =2Q

P	
y ¼P	

z ¼ e∓ f 0=2Q:
ðA4Þ

Therefore, the relative extension is (Equation 16):

ϵ¼Pþ
x �P�

x ¼ sinh �fð Þ
Q

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2f �1

p
cosh f þ2cosh f 0

, ðA5Þ

and at rest:

ϵ0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
cosh2f 0�1

q
3cosh f 0

: ðA6Þ

At the initial low tension ϵ0 ≈ f 0=3, and at high ten-
sion ε! 1, in agreement with Equation (11). The orienta-
tion in a cluster is given by (Equation 15):

Os ¼ 3
2

Pþ
x þP�

x

� ��1
2
¼ cosh f � cosh f 0

cosh f þ2cosh f 0
: ðA7Þ

Extracting cosh f and cosh f 0 from Equations (A5)
and (A6) in terms of ϵ and ϵ0, and substituting in
Equation (A7) and rearranging, the overall molecular ori-
entation is obtained as a function of the cluster relative
extension11,20:

O¼� 1�3ϵ20
� �þ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1�9ϵ20ð Þþ3 1þ3ϵ20ð Þϵ2
p

1þ3ϵ20
pc, ðA8Þ

where, ϵ is given by Equation (A2), and the cluster
weight fraction pc is added (Equation 17). Approxima-
tions yield O≈ ϵ20sτ

1�ϵ0
1�3ϵ20

pc for low sτ and
O≈ 1� 9 1�ϵ0ð Þ

2sτ

h i
pc for high sτ.
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